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I Nt R0DUCT I ON

This report cont.ain-,- a collection of technical papers describing

research In adaptive control supported by AFOSR contracts F49620-83-C-0107

and F49620-8i4-C-0054.

The basic objective of this research program is to establish the

theoretical foundations and performance limitations for adaptive control

applications to large space structures (LSS). An important element of the

research Is to examine implementation concepts which can lead to appropriate

hardware development.

The program was originally formulated in late 1982 in response to the

increasing concern that performance robustness of Air Force LSS type systems

would be inadequate to meet mission objectives. In particular,

* uncertainties in both disturbance spectra and system dynamics

characteristics (both time varying and stochastic uncertainty) usually

significantly limit the performance obtainable with fixed gain, fixed

architecture controls. The use of adaptive type controls, where

disturbances and/or plant models are identified prior to or during control,

gives systems designers more options for minimizing the risk in achieving

performance benchmarks.

* EThe research was originally directed toward real-time adaptation of

the estimator form using variable order lattice filters to construct the

desired compensation. Early in the research, however, lack of a well-

developed robustness theory for adaptive mechanizations required a

reexamination of the problem at a more fundamental level, i.e., development

of model and disturbance uncertainty bounds for which adaptive algorithms

would exhibit (stable) desired performance. Toward this end there have been

two major accomplishments:

(1) Development of Theory: In examining the possible use of "rapid"

adaptive control it was necessary to generate new theory of use on large

space structures. This theory accounts for the effect of unmodeled dynamics

with distributed parameter systems, such as flexible space structures, and

extends current adaptive theory In several directions.

In the first place, current adaptive theory provides conditions for

"global" stability, I.e., bounded-input, bounded-output stability with no

1:



•.. limitation on the size (or spectrum) of the bounded-Inputs (e.g.,

disturbances and references). Secondly, the theory Is limited to finite-

dimensional linear systems. This latter condition cannot be satisfied by a

flexible space structure, which Is a distributed parameter system. Also,

the disturbance and reference inputs effecting the spacecraft have limited

magnitudes and spectrums and these limits are known, although not precisely.

The theory we have developed circumvents those difficulties by providing

conditions for "local" stability, i.e., limitations In input size and

spectrum are accounted. The theory also allows for a distributed system as

well as providing quantifiable bounds on permissible model error. These

results extend the state-of-the-art In adaptive theory beyond the current

limits.

(2) Methodology Development: The use of "slow" adaptive control,

which is more practical than rapid adaptive control in most space

applications, necessitated a new methodology development merging key ideas

in parameter estimation, system identification, and robust control design.

By "slow" we mean that there is sufficient time to run batch identification

before the control system is modified. The methodology we have developed

resolves a long standing problem with adaptive systems of this type, namely,

the means to provide a guaranteed level of performance given an "identified"

model of the system together with the model error between the system and the

identified model. In fact, our methodology generates performance vs. model

error tables (to be stored in the computer) from which the control design is

immediately obtained. Moreover, the order of the control design is

determined strictly on the basis of model error and performance demand,

rather than trial and error as has been suggested in the past.

r
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by

Robert L. Kosut and Michael G. Lyons

Integrated Systems, Inc.
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p Abstract

This paper examines some basic theoretical and practical issues in

the adaptive control of large space structures (LSS). Particular attention

is paid to the practical issues of model error, decentralization, and

subsystem performance allocation. It is concluded that the currently

available theory of adaptive control, which is based on global stability,

centralized information, and perfect modeling, is not well suited for an

- LSS. A direction for future research is suggested which is based on a

theory of local stability for the adaptive system.

*Research supported by AFOSR under contract F49620-84-C-0054.
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1. NTRODIWITON

The high performance requirements of Large Space Structures (LSS)

together with potentially large uncertainties in the system model, motivate

the use of an adaptive control system. Although a great variety of adaptive

control schemes exist for lumped parameter, small scale systems. e.g. [1i.

these methodologies cannot be directly applied to the LSS because of the

following issues:

(1) Model error - The actual system is a distributed parameter system,
theoretically of infinite dimension, whereas the adaptive scheme
must be based on a reduced order model (ROM) of finite dimension.
This discrepancy introduces one kind of model error, the effect of
which is often referred to as 'spillover.' Another class of model
errors are those attributable to uncertainty in parameters (e.g.,
mode shapes), neglected non-linearities, and other uncertain
unmodeled phenomenon (e.g., residual modes included).

(2) Decentralized control - In some cases the physical size and
complexity of the LSS makes it impractical to use a centralized
control structure due to considerations of actuator/sensor costs,
system reliability, and computational requirements, as well as the
step-wise deployment (and removal) of sub-sections.

(3) Performance allocation - Since the ptrformance requirements are
stringent, it is necessary to allocat- performance in an efficient
manner so that sub-systems can help ome another.

In this paper we explore the above issues from the point of view than an

LSS can be represented as a large-scale interconnected system [2]. The

interconnection model used is composed of a number of uncertain subsystems

which are linked to other subsystems by an interconnection operator, which is

also uncertain. Uncertainty in the subsystems and interconnections is

expressed by using the notion of a conic model [31-[4], i.e., representing a

complicated uncertain dynamic system as belonging to a set of systems

generated from simpler dynamic systems.

By using this representation the issues enumerated above can be brought

within a single framework which facilitates the analysis and synthesis of

adaptive controllers as discussed in [51-[61.

0
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t 2. BACKGROUND DISCUSSION

The development of a design methodology for adaptive control of LSS

involves many different issues. A comprehensive discussion of the theoretical

* and practical problems involved in both LSS control and adaptive control is

well beyond the scope of this paper. In this section we present a very

selective discussion of the issues that seem most relevant.

2.1 Adaptive Control

Adaptive methods have achieved a great amount of success in producing

stable, convergent adaptive controllers and adaptive observers for systems

whose structure is known and whose parameters are constant but poorly known or
L slowly time-varying. Adaptive schemes may be direct, as shown in Fig. 1,

i.e., the available control parameters are directly adjusted (adapted) to

improve the overall system performance or indirect, as shown in Fig. 2, i.e.,

the system parameters are identified (based on the assumed system structure)

U and the control commands are generated from these parameter estimates as

though they were the actual values.

The use of such methods on distributed parameter or large scale systems,

like LSS, is greatly limited by the modeling problem-the adaptive scheme must

be based on a ROM (Reduced Order Model) of the actual system and, hence, the

order of the model is, and must remain, substantially lower than the

controlled system [7]-[8].

The crux of the problem with adaptive control is to guarantee that the

adaptive controller that is designed on the ROM will not, through a

combination of spillover and model uncertainty, diverge and ultimately go

unstable. This problem is extremely difficult and has only recently been

addressed, even in the general context of adaptive system, e.g., [51.[6].[9).

2.2 LSS Modelint and Model Error

Traditionally, control design is based on models of the system which have

been validated thoroughly by extensive testing. Since the structural

integrity of LSS does not permit ground tests, the usual approach to modeling

is not feasible for LSS. The primary difficulty is validating the model,

i.e., determining a ouantifiable measure of model uncertainty. In this

p 5



Performance
Objectives

Couu~and FEBC LN

Figzre 1. Direct Adaptive Control

Performance

* OjeciveDESIGN IDENTIFY

Sensor

Outputs

ICommand FEEDBACKPLN

Fi&sure 2. Indirect Adaptive Control

6 6-



regard, the LSS has the interesting property of being an infinite dimensional

system, at least theoretically so, but practically of very high order. Thus,

the order of the design model and controller is not known a priori. In

consequence, adaptive controllers for LSS should be not only parameter

adaptive, but order adaptive as well. This leads naturally to the

consideration of order-recursive lattice adaptive control [10].

A very natural means to determine model error (sometimes referred to as

plant uncertainty) is to perform an experiment which compares the model with

data from the actual system (or plant). If there is no error between the

model and the plant, then we have perfect knowledge of the plant. Normally,

the situation is the opposite--the error is non-zero and represents how close

the model is to the plant. If we quantify this experiment, by defining a

specific measure of the error size, then this gives a sensible statement as to

V model accuracy. For example, during experimental modeling using system

identification methods the model uncertainty is measured as the difference

between the measured output and the model output. Bounding this model error,

for all possible input/output pairs, results in a set characterization of

plant uncertainty. For example, a set description of an uncertain LTI plant

is to define a ball in the frequency domain. The center of the ball is the

nominal plant model, and the radius defines the model error. This set model

description is one type of a more general set description, referred to as a

conic-sector [4]. The uncertainty in the plant induces an uncertainty in the

input/output map of the closed-loop system which can again be characterized by

a conic sector. Performance requirements for the control system can be

translated into statements on the conic sector which bounds the closed-loop

systems, making it possible to check whether a given design meets

specifications, and providing guidelines for robust controller design, e.g.,

2.3 Decentralized Control for LSS

In the context of LSS control design, what we mean by a decentralized

control is the following: The control system is made up of a number of sub-

controllers (local controllers) which have limited authority over the LSS and

-which use limited information about the LSS. The limitations on control

authority and the information pattern are the main features of the

decentralized control problem. The general structure of such a decentralized

7



control system is illustrated in Figure 3. The dashed lines indicate a

partial information exchanie, e.g.. the local controller receives reference

commands (or discretes) from a higher level control (the coordinator) and/or

information from other local controllers in the form of an 'aggregated' state.

In a decentralized control we also need to determine the effect of

partial information on closed-loop performance. The two kinds of system

ignorance, i.e., model uncertainty and partial information, can be viewed

under one framework by considering the controlled LSS as an interconnected

system, e.g., [2].

An interconnected system is a system which consists of several subsystems

interacting through various interconnection operators. The key feature used

here is that knowledge about the subsystems and interconnection operators is

incomplete.

Techniques for decentralized synthesis more or less adhere to the

following steps (see, e.g., (12)).

Step 1: (Decomposition) Identify the individual subsystems and the
interconnection constraints between subsystems.

Step 2: (Local analysis) Design the local controller so that each
individual subsystem satisfies specified local requirements.

Step 3: (Global analysis) Verify that the interconnection 6f the
individual subsystems satisfies specified global requirements.

Step 4: (Robustness) Verify that the total system performance is robust
with respect to failures, disconnections, parameter changes,
etc.

In practice, these 'steps' overlap and iterations are required. However, the

first step, decomposition, is necessary to begin the design process.

There are several methods available for decomposition. These may be

broadly grouped into generic categories based on: time-scale separation,

frequency separation, and performance properties (e.g., observability,

controllability, quadratic cost, etc.). All 6f these can be viewed

graphically as well as tabularly, and many physical systems, LSS included,

possess all three types of decompositions (see, e.g., [13], Chapters I - III

for complete exposition).

It is important to emphasize that many decomposition methods are purely

mathematical and may decompose the system into simpler numerics' problems

convenient for parallel or distributed processing. In the LSS environment,

... . . ,
.. - D. " ," .. . • L. . A. . . . - 2 - ,- - -. - -



DYNAMIC SYSTEM

Actuators/Sensors Actuators/Sensors

LOCALLOCAL
CON4TROLLER ----- CONTROLLER

I N

COORDINATOR

Fi~ure 3. Decentralized LSS Control. 71e dashed lines
indicate a partial exchange of information.

9



* I1

decompositions normally result because a natural separation is physically or

geographically present between functional components of the system. For

example, consider the following task oriented decomposition:

(1) High authority actuators and sensors with low bandwidth for rigid
body control

(2) High authority actuators with bandwidths to 20 Bz for slewing, with
possibly a series connected low authority actuator for final small
notion slew correction

(3) Medium authority actuators and sensors for vibration isolation of
disturbances

(4) Low authority actuators for isolation of critical structural
subsystems (mirrors, focal plane, etc.)

(5) Very low authority actuators/sensors for active damping or resonant
absorption.

Some decompositions result from spatial differences; weak dynamic

interaction effects can be easily identified. A decomposition also occurs

from temporal differences; phenomena occurring at different time-scales, e.g.*

a separation between fast and slow modes or between low frequency and high

frequency effects. For example, groups of the modes can be separately

controlled by separate controllers which do not destabilize each other.

Specific combinations of weak dynamic coupling and separation of slow and fast

modes can often be identified, e.g., Figure 4.

In many cases, delegation of control authority is 'politically'

practical. It is unrealistic to assume that the manufacturer of one device

will ever design another manufacturer's device, or even that both will

delegate complete authority to a systems house. The only comunication

possible in this case is to assess each manufacturer with specifications so

that the operating devices do not compete. For example, simultaneous on-orbit

assembly of different parts of the LSS may be accomplished using temporary

vibration control systems built by various manufacturers. This motivates a

design specification which includes tolerances that allow for some variety,

such that the overall differences do not impair on-going missions or

constructions in other parts of the LSS.

10
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Robust Interconnected Systems ApDroach

The input/output view of interconnected systems is completely compatible

with conic-sector model uncertainty descriptions. Representative theorems

(see, e.g., [2]) refer to interconnected systems of the form
i ". i - Y Ri. J

e= 
i ..

j

iiiy

where G..... 0 are the subsystem operators, and H ... , H are the

interconnections. The key features of the theorems are:

(1) If the subsystems and interconnections have quantifiable
input/output properties. e.., conic-sector bounds and/or passivity.
then the total system will exhibit performance properties directly
attributable to the subsystems and interconnections. e.g.. conic-
sector bounds and/or passivity.

(2) The total system properties can be obtained by combinations of

subsystem and interconnection properties.

*Tis latter point is extremely important in the decentralized setting. This

means that one subsystem can 'help' overcome the deficiencies of another

system. Furthermore, this also gives a clue to the question of allocating

subsystem performance in an efficient way so that a desired overall

ptiformance is achieved.

11 ,"
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Before attempting to develop a metbodology fo r adaptive control of

uncertain (decentralized) systems. it is logical to consider the non-adaptive

* case first. In fact, the adaptive design procedure should build on the robust

design procedure.

Historically, research in robust control theory has proceeded from an

input/output view of systems, e.g., 131,[143. The more recent of these

results [4],[151 are variations on the Small Gain Theorem [3). The theorem

asserts that if the 'loop gain' of a feedback system is less than unity, then

the closed-loop system is stable. However, to properly utilize the theorem it

is necessary to isolate the source of the model error. This is accomplished

by what is called a 'loop-transformation.'

Many variations on loop-transformations are available (11], [153, and

small gain theory can be applied to analyze the robustness of criteria other

* than stability, e.g., tracking response transients. Moreover, the technique

can also be used to assess the impact of various kinds of error sources. For

example, typical sources of model error in spacecraft systems include:

(1) numerical errors due to approximate modeling techniques, e.g., high
order NASTRAN models.

(2) actual parameter changes in the LSS e.g., thermal effects, gravity,
spacecraft and antenna dimensions, mass distributions, etc.

(3) unmodeled dynamics, e.g., effect of reduced order modeling,
neglected residual modes ('spillover'), neglected actuator/sensor
dynamics, non-linearities, etc.

(4) incomplete data obtained from on-earth testing, e.g., partially
assembled structures in simulated zero-g.

Therefore, uncertainty in the baseline model arises from both actual causes

and intentional approximations of complicated phenomena. In many cases, these

*" are indistinguishable.

* Negative results from the robustness analysis may warrant redesign of the

controller, or even upgrading the reduced order design model if adequate

. robustness cannot be achieved (e.g., [111).

3.1 Application to LSS

Consider a controlled spacecraft, as depicted in Figure S, with the

following model:

* 12

' , - i. '". " - ". i .* -- .* -.-. " . * - *.- L - -- -- - - -.'. , ".''. . '- . - - '.. .. .,.- - ,-



Sensor Modge~l

Y y D a sensor noise

SPACE C~tAf

I-- -- --- -- 1SENSOR

UU

Figure 5. Block Diagram of Controlled Spacecraft

Dynamic Model

y M (s)u + d * d =disturbance

Controller

u =C(s)(r-y 5) r reference

where M(s) is a finite dimensional transfer function matrix model
* representing the dynamics of the actuators and spacecraft and C(s) is the

transfer function matrix of the controller.

Let the actual dynamics be represented by

y P(s)u+ d

where P(s) is not necessarily finite dimensional. For example. P(s) can

be either a high order NASTRAN model or represent data from the actual system.

whereas M(s) is the reduced order control design model. Thus, the

* controlled output is:

y = (I + PC) d + (I + PC)1 PC (r-n)

R dHyr I ayd
(The complex variable 'a' has been suppressed for brevity of notation,

unless needed for clarification.)

* Suppose that X. is a reduced order model of P. Let

where Ar represents the effect of neglected residual modes. Thus, following

111], the closed-loop response is:

9 a i (1 + MC) [1 4 A C(1 4C NO A CUl + MC)1

_Yd yd r
B (I NO NC 1

P 13



where Ud is the nominal transfer function with no model error, i.e.,
yd

A 0. r

Similarly, we can examine the way in which other kinds of model error

- enter into the closed-loop dynamics. The spacecraft model, for example. may

not include actuator dynamics. This omission can be represented by the model

error form,

P = M(I + A)a

where A represents the deviation from the dynamics of an actuator with
a

infinite bandwidth. In this case, the closed-loop response is:

Hyd = H - (I+MC)-I M[I+A (OCM) -CM] A aC(MC)1

Applying the Small Gain Theorem 111. [15], the actual spacecraft system is

stable if:

(1) The spacecraft model N is stabilized by C. i.e., the transfer
-1 -1-1* functions (I + NC) 1  C(O + NC)-1  (I + MC) M. and

(I CM)- CM are all stable.

and either:

(2) Reduced order model errors are bounded by

IIA (j )ll ( 1/ IIC(I+C)-1 (jo)ll, W 1 0
r

or

(3) Actuator model errors are bounded by

IIA(jw)I ( l/<I(J4CM)-CN(Jw)ll, W 0

where the norm II.II can be any matrix norm. Typically, the maximum

singular value a(.) is used. However, this may be unnecessarily

conservative; other measures are available. e.g., the Perron eigenvalue [4].

The selection of the appropriate matrix norm will be examined.

* In [7], there are several examples of these robustness tests using the

" ACOSS model, CSDL-I. Table I summarizes these robustness tests for generic

model errors bounded in singular value by

u[A(jw)] £ 6(w), w 0

where 6(w) is determined from input/output tests, e.g.. RNS tests. Table 1 -

shows the stability marins, denoted by 6 am, defined as the maximum bound on

model error, which (at the specified location, e.g., actuator, sensor, etc.)

ensures stability. Thus,

6(w) (6 (W) , w2O.
amJ

Note that the tests shown presume only on location for uncertainty.

Bounds on simultaneous errors at different locations are easily obtained [4],
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[7). Again. the upper singular value norm o(.) can be replaced by any other

matrix norm 1[.11.

Performance Robustness

A similar procedure will be used to determine an upper bound on model

error to ensure a specified level of performance, i.e.. performance

robustness. Let desired performance be defined by

a[(B - Byd)JMw)] j Pla))[Eyd(JB )]
yd dy

Thus, p(w) specifies a bound on the relative deviation of Byd  about the

ydydnominal Nyd . For example, if the effect of reduced order modeling is bounded

by

V[A (jw)] j p(w)[p(W) 1]- /O[C(I+MC)-(jd)], W k 0

then the desired performance robustness is guaranteed.

Similar expressions can be obtained as a result of other sources of model

error, e.g.. sensor model error. Table I summarizes these performance

robustness tests for generic model error. The table shows the performance

marxins, denoted by 6 , defined as the maximum bound on model error (at the
pm

specified location) which ensures the specified performance tolerance. Thus,
6(w) ( 6 (w) , w ) 0.

pm

guarantees performance robustness. This also guarantees stability, since,

6 (W)<6 () > 0.
pm sm

4. ADAPTJVE CONTROL

It is compelling to pass directly from the preceding notions about robust

control to the following indirect 'adaptive' control algorithm:

Identification

Stey 1: Using input/output data estimates the free model parameters,

thereby obtaining M.

Stei_: Using the same input/output data in Step I obtain the upper

bound on the residual (unmodeled) dynamics.

16
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* Desi it

SteP3: Using the model M from Step I along with the model error bound
in Step 2, determine a vontrop compensator C such that
performance is bounded above by a desired level. If no such
control C can be found, return to Step I and upgrade the model
fidelity.

w Reconfiguration

Step 4: Reconfigure the existing control in accordance with Step 3.

Ste 5: Return to Step 1 and repeat.

Although this process appears entirely reasonable, there are several open

questions. In particular:

(1) What is the best identification procedure for Step I? For example,
what are the advantages of output error, ARMA models, lattice forms,
etc?

(2) How is the control design in Step 3 actually implemented in Step 4?
If, for the example, the new controller is put in place instantly,
then there may very well be a transient introduced such that system
performance, although stable, is unacceptable. If. on the other
hand, the new controller is gradually phased in, e.g.,

u=(-u)u + a u
OLD NEW

where a varies slowly from '0' to '1', then the question is: how
* slowly?

(3) If in Step 3 no control is found to satisfy performance, then how is
the model fidelity upgraded? Should we add modes to the model? Or
perhaps the test for model error is too conservative. If so, then
how can we build a hierarchy of model error tests?

(4) In Step 3, what is the design procedure for selecting the feedback
given a nominal model M, a bound on model error, and a desired
performance level?

" With the exception of (2), all the above issues pertain to robust (non-

adaptive) design. This should not be surprising, since one must assume the

existence of a tuned robust control, which could be attained by the adaptive

system. Thus, in order to prove the existence of a tuned control, it must be

prssible to design one.

17
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Graphs 1-5 show magnitude of model error vs. frequency us;Ing various

models compared to the input-output data for the CSDL #2 structure. In all

the figures we have plotted the "optimal" stability margin determined on the

basis of an accurate knowledge of the first 18 modes (up to 2 Hz). In order

to achieve guaranteed performance levels near specification, it is necessary

that model error be significantly smaller than the optimal margin in the 2

Hz range.

Graph 1 shows model errors for an accurate 10 mode model (0.64 Hz) and

an accurate 18 mode model (1.77 Hz). To achieve performance it is necessary

to identify modes 11 to modes 18 (0.81 to 1.77 Hz) in order to reduce the 10

mode model error. Graph 2 shows a blow-up of the 2 Hz region of interest.

In Graphs 3 and 4, respectively, we show the result of two different

13 mode ID procedures. Both procedures use 2 mode models where the

parameter estimates are obtained from data which is filtered over narrow

frequency bands. The ID procedure in Graph 5 sweeps overlapping modal bands

11-14, 13-16, and 15-18. The models are then added together to form the 13-

mode model. Although the model error is very close to ideal (18-mode model)

below 1 Hz, there is considerable peaking near modes 17 and 18. The

procedure used to obtain Graph 4, however, shows a more uniformly small

error. In this case a 13-mode model is obtained by sweeping through narrow

non-overlapping frequency bands, i.e., modal bands 11-14, 12-15, 131416, and

14-18. Using this latter 13-mode model it is possible to obtain guaranteed

performance very close to optimal even though modes 14, 15, and 17 are not

completely known.
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In summary, a fundamental issue in the design of an adaptive controller

for an LSS is robustness to reduced order modeling, parameter uncertainty, and

unmodeled dynamics. Current theory, which provides conditions for stability

(or convergence) of adaptive systems, is limited to global stability and

relies on the passivity of a particular subsystem operator [1], [3]. In this

regard, since the LSS has an inherent passivity with co-located

actuators/sensors, it is natural to exploit this for adaptive control, e.g.,

[16], [17). However, the presence of actuator dynamics easily violates the

passivity requirement.

For example, consider actuator error

P = M(I + A ),
a

A unknown but stable where M, the nominal model, is in model form, i.e.,
a

M= sB' (s2 1 + 2sZfl + a 2 $'B

with 0 and z diagonal matrices of modal frequencies and modal dampings,

respectively, $ is an orthonormal matrix whose columns are the approximate

mode shapes; and B is the actuator influence matrix. Thus, M is passive,

in fact, M is positive real (PR), i.e., M is exponentially stable, and

E[M(jw) [M(jw) + M(-jw)'] 1 0, w e R

where X(.) is the smallest eigenvalue. For scalar systems, M[M(jw))

Re[M(jw)]. In [5] it is shown that P remains passive if M is passive. A a

is stable, and A is bounded such thata

a[A (jw)] < j[M(jw)]/a[M(jw)], w a R
a

As discussed in [5], this bound is very conservative and easily violated

by even the most benign actuator dynamics, e.g., a second order actuator

model. On the other hand, the SPR condition is a sufficient condition and not

necessary for stability of the adaptive system. Further, practical evidence

from actual applications supports the fact that SPR is not needed to provide

high performance adaptive systems, e.g., [18].

20
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The need for the SPR condition can be eliminated by considering local

stability rather than global stability [63. Local stability refers to

stability where known restrictions exist for the system external inputs,

uncertain parameters, and unmodeled dynamics. For example, persistent

excitation induces exponential stability [18]. Since an exponentially stable

system is inherently robust, it is logical to expect that unmodeled dynamics

could be tolerated. In [6] several mechanisms-including persistent

excitation- are examined which ensure stability of the adaptive system,

without SPR, provided certain other restrictions are enforced, e.g., slowly

varying signals, approximate SPR, and restricted signal magnitudes.

Aiplication to LSS

Consider the LSS adaptive control system

y =d + Pu

where d is the disturbance; P is the aim transfer function matrix across

colocated actuators/sensors. Let each of the m control signals be given by

ui = 1 .... , m

where e (t) is the adaptive gain at each colocated station. The objective

of the adaptive controller is to suppress the vibrations due to the

disturbance, while achieving a specified damping in certain critical modes.

Note that the adaptive control structure is. in effect, decentralized. A

typical parameter update law [I] is,

A
0 - 001.) js i > 0

8i-1i )i 0- I, ... , a
e, - Wsy I

Local stability conditions esit (see [6] for details) if the system S:

(lo ) --> (ele 2 ,ylpy 2 ), shown in Fig. 6, is stable where

L - diag -  .... ',)
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N y*Hly 4 e*Iy2 Y

l] 1 +PCs)I

El= (I + PC*)-P

V dies (W1 . .... W ) - -

C= diag (01 .. 0-
Ur

Y$= H2d e= Wye
S S

The constants 01 .... m are the tuned adaptive gains; ye and e are

4 the responses of the corresponding tuned system. Global stability is

guaranteed if e. and ye approach zero asymptotically, H and H 2  are

exponentially stable, and H is SPR. The SPR condition on H is not
I 1

needed for local stability. It turns out that S is exponentially stable if

Ye y is persistently exciting and eo is sufficiently small (6].

"u I  + e I  Y.

L2

S:

Lr.2 e2 u2

Figure 6. Feedback System S

S. CONCLUDING REMARKS

In this paper we have briefly discussed some of the practical issues

involved in the adaptive control of an LSS. e.g.. decentralization, model

error, and performance allocation. The conclusion is that existing adaptive

theory needs to be radically revised if useful engineering tools are to

emerge. A particular direction for further research, as advocated here, is

the further development of a theory of local stability for adaptive systems

16]. We have shown that such a theory is compatible with conic-model
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represent ati ou. 141 and interconnected system theory 121) thus, providing the

basis for resolving the Issues enumerated above.
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4 I nterniitional Fedcrtion of Automitii onrol

An Input-Output View of Robustness in Adaptive
Control*

R. L. KOSUTt and C. R. JOHNSON. JR++

An input-output theory of adaptire control prorides a means of determining the
robustness properties of adaptive algorithms.

Key Words -Adaptive control; robustness; robust control; stability; model reference adaptive control.

Abstract-The stability and robustness properties of adaptive Unfortunately, unmodeled dynamics can cause
control systems are examined using input-output stability adaptive controllers to exhibit significant perfor-
theory, i.e. passivity and small-gain theory. A generic adaptive
error system is developed based on the concept of a tuned mance degradation and instability, even with an
system-an ideal converged (nonadaptive) closed-loop system. initial controller parameterization that closely
Using this error system with passivity theory gives conditions for approximates the desired closed-loop response
global stability where only boundedness (in norm) is required on
the external inputs, e.g. disturbance, reference and initial (Rohrs and co-workers, 1981, 1982; loannou and
conditions. Small gain theory is used to develop local stability Kokotovic, 1983a,b). These simulated circumstances
results where the magnitudes of the external inputs are restricted, of undesirable behavior are in sharp contrast with
In the global case, a particular system operator (not the plant) is
required to be strictly-passive, a condition which is unlikely to successful applications of adaptive control where
hold in actual use due to unmodeled dynamics. The local results, reduced-order modeling is unavoidable (e.g. Astr6m,
however, are not so restricted and allow for unmodeled 1983). This issue ofmodel error, then, is of undeniable
dynamics. In this latter case an estimate of the stability margin is practical importance, because no actual plant is truly
given under a persistent excitation condition.

linear and finite-dimensional.
I. INTRODUCTION Perhaps the main reason for the lack of a

AT A VERY basic level, the issues involved in adaptive robust/adaptive control theory is that the emphasis
control design are no different from nonadaptive has been on global results. What we mean by 'global'
(robust) control design. In either case the goal is to is that the intent is to require as little a priori
maintain specified performance properties despite information about the plant parametrization and
uncertainty about the dynamics of the plant to be the external inputs as possible to prove stable
controlled. as well as uncertainty about its behavior. Because of this, the resulting requirements
environment. In the nonadaptive case the problem (i.e. assumptions) are too strong, e.g. known plant
of robustness to unmodeled dynamics is well order. Therefore, it is compelling to abandon the
formulated (e.g. Doyle and Stein, 1981 ; Zames and requirement of global stability-a requirement that
Francis. 1983). However, research in adaptive may well be beyond the needs of most actual
control theory has focused almost exclusively on the systems-and develop conditions for local stability.
case where the plant can be fully represented by The term 'local' is used in the sense that the plant

some member of a family of linear finite- uncertainty and external inputs are limited in a
dimensional parametric models (e.g. Narendra, Lin defined way, e.g. by restricting the magnitude and
and Valavani, 1980: Goodwin, Ramadge and spectrum of the reference commands and disturb-
Caines. 1980). Thus. the model error due to ances, as well as the initial adaptive parameter error.
unmodeled dynamics is presumed to be zero. In this paper we will present an input-output

view§ of robustness in adaptive control. In

Received 6 November 1983; revised 4 April 1984. The particular, we shall draw attention to uncertain
original version of this paper was not presented at any IFAC unmodeled plant dynamics-often referred to as
meeting. This paper was recommended for publication in revised model error-and to uncertain, but bounded,
form b) guest editor L. Ljung. disturbances. Based on this view it may be possible

+ Integrated Systems. Inc.. 151 Universitq Avenue. Palo Alto.
CA 94301. USA. to merge robust control theor> with adaptive

: School of Electrical Engineering. Cornell University. Ithaca. control theory.
NY 1453. ISA. The next section (Section 21 formali7es the

A good ,'urce book on this material is the text h Desoer and
Vdasagar 119751. The notation used thcre is also used conversion of a generic adapti~c controller to an
throughout this paper equivalent generic error s~stem. The input output
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properties of the error system relate the perform- but, rather, be any member of a set S. e.g.
ance of the nominal control system to that of the
adaptive control system. Section 3 applies this S = 1,rER""iH ,.Jtn has desired properties, (2)

formulation for a specific continuous-time adaptive Certain parameter sets S correspond to well-
model-following algorithm. This permits the appli- defined design strategies. Specifically:
cation in Section 4 of stability results for the
continuous-time version of the generic error system. Matched. Let , denote the matched *parameter
This section also includes a discussion of the strictly set, i.e.
positive real (SPR) condition imposed on an
operator within this error system. Finally, in Section T= {e 6R"IH,,( ) =0,. (3)
5, we will examine the issues involved in obtaining

condtios fr loal tablit androbstnss. Robust. Let S' denote the robust parameter set,conditions for local stability and robustness, . .

Though this paper concentrates on continuous-time

systems (due to space limitations), this same S'= {t°-R",IIH,(n )w1/11w1 _ p°, Vw(.) E W:
input-output approach is applicable to robustness (4a)
analaysis of discrete-time adaptive control (e.g.
Kosut. Johnson and Anderson. 1983; Ortega and where the norm 111 is defined on the underlying
Landau, 1983) as well as time-varying systems function space. The finite constant pO represents the
(Gomart and Caines, 1984). robust performance specification. Note that So

includes the 'optimal' robust solution, i.e. those
2. ERROR SYSTEM FORMULATION 7re R"'- that solve

(A) Tuned control concept
Consider the nonadaptive control system of Fig. infsup (flH (n)Il/llwII). (4b)

I, described by X w

Tuned. Let S,., denote the tuned parameter set
e = H,,,0r)w (!) associated with a particular w(.) I W, i.e.

where e)E R"- is the error output, w(t)cR is the S, = 7{ir .,eR H,,(n.)w )II/I <p . (5a)
external input. and n e R", is a set of controller The finite constant p* represents a tuned perfor-
parameters to be selected. For our purposes. H,.(') mance specification. In order for (4) and (5a) to be
represents a closed-loop parametric feedback system m
dependent on the adjustable parameters in nt. The
output e of H,,(') is the error the control system p 0 < p0 (5b)
experiences in meeting its objective given the external
input %. Portions of H,.(-) are not entirely known, i.e. the desired tuned performance is better than the
e.g. the open-loop plant imbedded in H,.(-). The desired robust performance. Also, S*,., will include
input w(t is also not entirely known but can be the'optimal'tuned solution, i.e. for each w E W,those
assumed to be in a subset Wof bounded signals. For 7t R"n that solve
example. w(t) can consist of a set of reference
commands and bounded disturbances. If the inf(IHe.(r)wiIwj). (5c)
imbedded controller were adaptive, it would adjust n

continuously on-line soas to reduce thc error; but for Ideally, the adaptive control should converge to the
now assume that n is constant and will be selected off- optimal parametrization of (5c). Thus, the tuned
line. parameter set, denoted by S*, is given by

If the control designer had all the 'off-line' time in .,2
the world to 'fiddle' with the parameters . then it is S* = U S*. 1. (6)
hoped that a satisfactory adjustment would be
obtained. Many strategies car, be envisioned for Note that each element of S* is satisfactory for a
determining a satisfactory 7r. In fact, such a particular w(-) e Wand that no one element in the
satisfactory parameterization may not be unique subset S*.. c S* need provide satisfactory control

for a different wH. (Although lr*,., E S* emphatically
W0- odenotes the dependence of the tuned parameters on

w(-). we will henceforth denote membership in S* by
the simpler notation 7r*GS*. where the w(-)
dependence is to be implied.)

The error signal corresponding to the matched

case is identically zero. It is this particular case that
Fi,. I Nonadaptive s)%tem. has received practically all the attention in adaptive
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* es~Cpcial tan opi aol Taiihugs. tile ii meitsiurable Th sflesodtiagthett imed ptaameter set
botinded disttlirbaneesC alluded to abo'.c hiaa their will be borne out Iii thle nem t subsction. Thle tuned
stOChastic coUnterparlt as% processes 'a'hich do noi setI is used there lt de'.elop at generic adaptn'e error
hase /ero mean. i.e. EF, 0t for an'.it%7. svstcm. At til point. ho%%caer. Ae rem-i 'iat it is

Thle more appealing of thle other t'.'o sets is the not necessar. to sokeo the optimization problem
tuned set S*. defined in (6) The associated error defined implicitly in 151. rather we only. need to
signal know that a solution exists which is better than the

is referred to as thle timed error and H(7zr I as the Now consider the adaptive version of (1 ).

tioned .Nten. Although tc*(, = 0 is ruled out due to depicted in Fig. 2. and described by the
the imnpracticalit'. of 7-* E S. we do not preclude the input- output relations
ease w\here e*(t - 0. This kllter case still presumes a
degree of idealization. Consider the case where the [j = [HaJfji] =~ i (Ifa3external input it, consists of a step reference H.,J I Hfrw (Ia
command with no disturbance and e* is the
difference between the plant output and the ft= flff C. (I lb)

* reference command. Thus. e*(t) -0 is the ideal
output error for an\ stabilizing controller engender- where iM( E R " are the adaptation parameters which
ing unit d.c. gain. This class of tuned controllers can are generated from the parameter adaptire algorithmn

Ube quite large esen if dim (r*) <dim (Tr). Now fl, and i4O I E R"" is the initial parameter estimate.
consider the impact of a bounded disturbance, The adaptive algorithm is driven by the output or
which is not necessaril) of any particular functional adaptalion errore(t)E R"-and the regres'sor,4(OlE Root.
form, such as a broadband bounded signal. Clearly, The regressor is obtained from sensed signals within
with such bounded disturbances present. e*(I) -i 0. the fcedback system.
and can onl% be assumed to be bounded. We want to ultimately determine conditions

- oAn important comparison for the tuned set S* is under which the adaptive system (11) is stably
to he robust set S" (4). Let attracted to the set of tuned systems (6). Recall that -

the tuned system set is likely to contain more than a
H_ H,(").t(8 single member, thus by stabili.y we mean stability

about' a (possibly disconnected) set rather than
denote the raahu'at error. Recall from (5) and (6) that about a point.
the tuned parameters n* are dependent on a
particular ita I) E 1' whereas the robuti parameters

n'arc not. Hence, the tuned error can never exceedr
the robust error. i.e. for a particular '.'. )E 14,&

Conudition (9) alsoo follows from the fact that p* < p"
(5hI. Note that it is possible for the robust set So to t
be empty even though the tuned set S$ is not. If S" is
not empty. then consideration of an adaptive LU-- -- -- - -
cotntroaller is just ified if for some 'large' subset of I- it, 2. Adiaptive %'.icm
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considere Ther .tlol rfeduce i the rnlx ity f te [ J -6)[, J G [- I (7
Cselomn an allowa srpeor foch con thel 7~
adaptcise. andenz thees Normally contro conirtoo

t\herpane npt and outpurevtsors fnid sins f Ths Henc.3cnberdans h iinFg4ad

thereof. F'o h example. i in i armestem es. decibd)

outputs.~e~t L0~tJ [ 4 .. )H.sJ tl
Atoughei hebie structue in (12xi) and (h13)4Gi

rmnsthe most nptwdee and sfituded veomtsla

nonetheless, other structures (as yet underdevel-
oped) ina% be more suitable to certain problems where
e.g. distributed and or nonlinear structures.

We will now make a strong assumption regarding
the way- in which lilt) and will are transmitted H,*,(s) =G,.As) + G,.(s)n*'(I + G4IA)7r'')- 'G,(s
through 1II.1 into ot) and I.(f). (I 8b)

H,.(s) =GwS G,s(st"+ + G4.(s),r") 'G4.(s)
Asuumpion. The map (tv. u) -i(e'. )is linear time- 01807

invariant (LTI p. i.e. H4.(s) Y ( + G,.(. I'l' 2 G,4s) (18d)

ei ) G _. is I G ...( 1][w) = (s)[ % )]I1 ',(s (I + G 4(s)n') 134 1(). 0 8e)

4 The dashed box in Fig. 4 is Hils). We wilt refer to

whcre (s% is the o#pen-hop interconnection matrixero(7isdntclo
whose elements are proper rational functions. (To e'(t) = H,*.(s) w(f). (19)
sinmplify notation %ke will usces to denote either the
Laplace transform variable or the differential We also make use of the iuned regressor, defined asL
operator, depending on the context.)

The adaptivec system 0 1) with bilinear control H&s 1.(20)
(13) and LTI interconnect ions (14) is shown in Fig. ~) H.s ~)
3. To transform this system to an error system, Finally, the error system (Fig. 4) can be depicted as
define file parapnt'Ier errtor in Fig. 5, where

filI=AiI -no 115a) rcQ) e*Q) - Ht~l,(s) r'Q) (21a)

witl) H,!(0 - - t (21 b)
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lFigure 5 revecats that this error system is composed practical meanitngfulness. We,' \\ill examine a
of a nonline:ar s~stern inl the forward loop. denoted partictlar conltinulous-timel adapui~e controller in
b\ N,,.. and the LTI s\'stem H, .() in the feedback thc followring section and deri~e the form of II,, and
path. Thu, the error system is driven externally by H .
the tuned s~st em outputs e*(,) and *1) and the ~ ~NI1L.II DPt~MDL
initial parameter error ()= (()) - FOL ONI LOW-'INAAPII MD

FOLLOWING

To characterize H,.*, and H some designation of((C) ENxi.MO'Cc 1? fle ihtned controlh'r
a tuned controller must be provided. We make the

The designation of the tuned controller is the choice bytaslumitt no moden eoreti

concept most important to extracting a meaningful choice by assuming that no modeling error exists in
the nominal plant parametric model. We close with

error system from the description of an adaptively consideration of the degree of plant mismodelingcontrolled system. It might appear that the ability to allowed such that this tuned controller is robust, i.e.
specify this tuned controller presupposes our maintains stable control of the actual system.
knowledge of an acceptable solution to the Following this discussion, in Section 4 we consider
underlying adaptive control problem. This is not
entirely the case. Given the parametric controller
structure of C(-). we need only have an approximnate (A) Direct model refrrence adaptize control
a priori knowledge of the system behavior. Given a
particular * we will discover that the restrictions Consider the model reference adaptive control

on H,*,. and H, can be assessed from knowledge of (MRAC) system shown in Fig. 6. described by
the tuned controller and bounds on the magnitude ut) = d(t) + P(.)uQ) (plant) (22a)

. of the plant modeling error. Such information is a "

practical result of a thorough plant modeling study. (t) = (s)r(t) (reference model) (22b)
Thus, the study of the stability of (21) will have e(r) = y(t) - () (tracking error) (22c)
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FIG. 6 Model reference adaptive system (a) block diagram. (b) controller detail.

where d(r) consists of disturbances and plant initial where the tuned parametrization n*(=fc-i) is
conditions, and r(t) is the reference command. Let distributed among the control elements as follows:
'C()l denote the adaptive controller, where 0)

is the parameter adaptive algorithm and Q-) is the A*(s) - 1r, s + .. + 7r,* (25a)
parametric controller. Following Narendra, Lin, A2* s) =7r:,~s I s + + 7r* (25b)
and Valavani (1980). let C(-) have the bilinear form A2s 4-+ ~ 2c

u~t) -~(A~i)Thus, (24) becomes
= - ~('"~Q) - ,(:)'*Qt) - (I() (23a)

where the regressor is given by filtered versions of u, whe =wre s ~)-C*,s YO-Q41 2a

y and rwhr
A20(s)

= [~)'. (t)' C~t]'1(s) + Af(s)'

= (Fls)u(l). fls)y)t). -F(s)rQ)] (23b) C~~) Ls+At(s)'

with

Cwf) Lis) (26b

F(s) =(b .. )C(.) Lis) + A I~)'

(23c0 We will refer to C* = [Cu,, , Q:1 as the tuned

and controller. The adaptive error system (21) cor-
responding to the M RAC of Fig. 6 is shown in Fig. 5.

Lis) s' + cK,s + .. + a(. (23d) The tuned signals (3.19) and (3.20) are

Thus. there arc Ak adaptive parameters. Using the my or ~ P.-I] Cr'

4definition of adaptive control error in (2 1c), the (27a)
MRAC control signal (22) can be expressed as (I + PC.,,r 'C:,F'r - C.*.l + PC.,)- 'F'd

*~~~~~~~~~~~~~ PQ) = )-'~) 't Z~rI i i' 'PC:,F'r - 0I + P,)-, 'F'd}

(24) (27b)
4 30
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alisstlllll'd io be

I t '( :, ' I 1
II .A, • 1 (30)

I1, II s I'(,,', 'I .,l 12Xhl t5 " (
3  

4 10

eh I ..... . I . ,, .a le I'l e ,,lected Lonstants.

.nd hcle Ilts)is ci.pol iliall. stable. i.e. all /Cros
of .A Is I are stl ict hIisiic the left half plane. It is well

IIt lhr' are a,'m mofltrol tlil tne to point out here that although .IsstlnptiOn (2)

1 hcre arc .x numnlber ofw.I.% tO dlesin the tulned abo~e can be satisfied h% file parametric model
cont ioller ('*. The important point no matiler 129b). this is not the case for tihe actual plant (29a)
mhat design nlethod is used is that the tuned due to the presence of fhe unstructured Uncertainty
design nIusi be robust, because the plant P(s in (27) (29 c).
and 128 is not entirely known. Recall from (51 that The tuned controller structure proposed in

the tuncd controller is dependent on the plant. For Egardt (1979) requires that
example. the 3k parameters in it* cannot make
r I-e t in 127 a be identically 7ero. This can be viewed R*
-is a reduced order design problem or. as in the = h,B*S* 31a)

discussion that folltos, a problem in robustness to BT*
unmodeled d\nanics. ( q*"= h (11 b)

Suppose that the actual plant can be described by

where T* is a stable monic polynomial of degree
P(% =[I + A(s)]P*(s) (29a) n7 > n - m - I, and where the polynomials S* and

h,,B*4. R* uniquely solve the polynomial equation

.4 T*A = R* + AS* (31c)

h(.¢" + h.s"- + ... + hi) i < n with S* monic of degree n. and R* of degree n - I.
s" + al s" ' + ... + a. With no model error (A = 0). this controller (31 ). in

(29b) addition to stabilizing the tuned system. also makes

the transfer function from r into y* identical to the
reference model fl(s). Thus, the tuning of(31 ) is for

the parameters (h, ...... h_ a. a.) provide a good the subset of W composed of bounded reference

fit, say at low frequencies. The transfer function A(s) signals and zero disturbance. The effect of(31 )on C.,
represents unmodeled dynamics, i.e. those dynamics will shortly be made apparent. Comparing (33) with
in P(s) not accounted for by P*(s), e.g. high (26) motivates solving for i* from
frequency efforts. Assume that A(s) is stable but is

otherwise unknown except for a bound, i.e. L + A* = B*S*

lA0 (j)I < A(()). V(, r R. (29c) A = R* (32)

This type of modeling uncertainty is said to be Al BT*.
unstructiured (Do)le and Stein, 1981). In more
general terms. (29) provides a set description of the A solution for it* exists provided that
plant rather than a single parametric model, such as
P* (Safonov, 1980). k = n, * pm > n. (33)

We will now examine the impact of model error
on a tuned control design based only on the With this choice for (A*, A2', At). the tuned
parametric model. The model reference format controller is given by (311 and by

suggests that we make e* as small as possible. To
eliminate the tracking error term in (29a) entirely, L (341

we will use the procedure described in Egardt Nil BS*

(1979). which requires that the following infor-
mation is known: (C) The eftect ofmodel error on tuned system

performan(e
(II n > ni (PO(s) is strictly proper) It is convenient to define the transfer function
(2) n and in are known
(3) B'Is) has all zeros strictly inside the left half G* R$ (35)

plane. " ,
31

. . 1i'- ~~~~~~~~~~~~~~~~~~~~~.:...- . ..... '.-.. ... ., .-. '.'.. . ..... ""."'............... .......... ..... ..



RI1 ko%&tI id U. R. Jottsos. ilR
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'.ipiial'. ,iij ac t hn h i i ptlitic of h 111sc tin Is to lilt I oduce F!Itbal

stabhIi cotidit ions aipplicable it, the g'enci ic ei ror

ii V.* 'AtI -(.~ill* I*; systent of (211 i. I lie pieceding section. iuc specified
a apt I'.4. coilt I oiler structurec C (.)i ioin % hiih weC

thenl de~ Llopcd tile Itimed SyStemI O(r.l di.%L

* 1 II .1~~~ R' I ~nd the interconnectionot aosI~ n ,
I W I~ -h I ' -- now% Ileed tocharacteri~c tik adaptive limQ in

-J 21 d). With this connection we %ill be able to
11 1 A) 1g 7 itrpe sonme conditions under whuch such a

1 * Aontinuouis-tirri adaptive controller possesses a
- Ii (limited) degree of robustness. OL~r irlterpreti~e

remarks will address the restrict ivenes- oif the SPR
(b) Condition on H,, that arises in practica1I\ all global

and. the tuned interconnections 08) becomestbltthoe.

L ~ (A) The adapt itc algori in
1l,, 1 1 - A(;*) I( i A) - - (37a) We whill begin b\ specif ingt(le adapti1 c lA I% Iof

7 . interest. A large class of adaptive algorithms (21d)
AL 1 have the from

B* T*A 7,jt = A [Uw(t) ]. A(O IE RP (41a I
** h1,L .(37b) (')(t ) = .(:)cr). (4 1 b)A(;* - -[(I + A) __ V

T*.4
L () ]We will refer to A (...) as the adaptation gain, which is

a nonlinear operator. In general A[ .]cahae

The tuned sN stem with no model error (A =0) is memory, usually only in (t). The adaptive
exponentiall\ stable. since, by assumption. the poles algorithm can also be expressed in terms of the

*of (B*)-' (.4 ) i .and (T*)- are in the open left half parameter error fi(t) as

plane. Hence c* and ,-* are bounded if r and d are
* ~~~bounded. Thus, the stability of the actual tuned ~ ' [(.r.~).~0 ()-f.(2
* system is guaranteed if and only if

The complete adaptive error system (21), including

(I + AG*)- and (I + AG*)-1 the adaptive algorithm (42). is shown in Fig. 7.
The choice of algorithms. i.e. the variety of _

are xpoentillystabe. 38) proposed adaptation gains, is virtually unlimited.
The following two are our chosen representatives:

Notc that under these conditions, the tuned
interconnections in (37b) remain exponentially Constant gain (Narendra. Lin, and Valavani. 1980).
stable. However, it is not necessary (nor possible by
assumption) to have a complete description of A in A [ v) ((1)] A o(O)4
order to satisfy 438). For example, if A is known to be (43), ~",A,= 0
exponentially stable, then with G* known to be
exponentially stable, 138) holds if (e.g. Doyle and Retarded gain (Kreisselmeier and Narendra. 1982).
Stein. 1981)

IA(jv)II-G*tJ~o)I < 1, Vg'un:R. (39) f jAo(I), Ift(i)I < c

Satisfaction of (39) requires that t 0 [Q I-IiI)/)f~ .IQ)

IA(jfo)il < b(m) = I Gij))j. VvOE c . (40) where A,, - R, ". AO = A(, > 0, and v _> max In~i.
* We will use the concept of persistent excitation
We will show in Section 4 that b(m) < I is the limit that has proven important in adaptive control, as
imposed on 6(m) by the usual global stability results well as in adaptive system identification.
for continuous-time adaptive systems. Similar limits
ar also encountered with discrete-time adaptive tfiion (des. 7).A ucin
systems. I-): R, R" i% peri.isentlt e~wciting, denoted by
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1 PL. if tlhere emst positi\c constant Isl 1. Y and o3 and there c\ists a Iinitc constant p > I such
such that that

... Re [I1.*,I,', l] t. )w llI l t,- V [0. _. I. (49)
Yt~, >2 (r Itt lltl'dt > oi I. Vs.E R . (45)

L Under these conditions, algorithms (43) or (44)
result in the following properties:

We will discuss the implications of persistent (i) If io*. * r(0i)E IV* then. f. e. ,, and r
excitation on global stability below, as well as in are bounded (in L, ). hit)-.. and
Section 5, in regard to local stability. e*(t) - eft) -0 . In addition, if..-'* e PE. then

f(t) - 0 exponentially.

(B) A global stabilit*1 theorem (it) Jf0e*. .*. , !O))e I" and .. 6 PE. then , e, ,

Theorem I. which follows, gives conditions for and r are bounded (in L,.
global stability of the adaptive error system of Fig. 7. (iii) if (e*, .*, (0))e W and PE. then the

SThe term g a rresults of (ii) still follow by using the gain
The temglobal* refers to the intention of seeking algorithm (44).the minimal (reasonable) restrictions on the tuned
signals e*(t) and .*(t), and the tuned interconnec-

• . tions H,(. s) and H.,(s) resulting in the proof that e Comms on Thtorem I. Though theoretically
and ,' remain bounded. i.e. (21 ) is stable, for any finite significant, these results do not offer the engineering
f(0).(AdetailedproofofTheorem I isgieninKosut design guidelines we would like to obtain. The
and Friedlander (19831.) In particular. we will major reason is that H,.,(.)SPR (condition (.42))

consider thefollowingtwotunedsystemsignalsetsas is virtually impossible to achieve for any actual

'inputs' to the error system: system. The primary culprit here is the effect of
unmodeled dynamics. Details on this issue may be

= [e*. *. f(O,*,i* EL2  L,, found in Rohrs and co-workers (1982). Further
.* L", . ft0)e Rt" (46) discussion will be provided in the following

subsection.
t...(0)I* E L, 4* E L,, Another technical hurdle is that the only realistic

f(0)eRr'". (47) case, insofar as the tuned signals (e*,4*) are
concerned, is when (e*,T*)eW . This is the
situation induced by continual bounded disturb-

boundedness and ultimate decay to zero, whereas ances, such as would normally be encountered. But
inclusion in L, only implies boundedness. in this case Ithe theory requires that either E PlEas in

part (ii) or that the adaptation gain is retarded as inT"heorem 1. For the system of Fig. 7, assume that part (iii). With bounded disturbances present it is not
A Iknown how to guarantee 4 c PE, since is generated

(Al) IIg(.%) is strictly proper and exponentially inside the adaptive loop. Note that part (i) only
stable (48) requires that the tuned regressor 4* E PL rather than

(A2) H,*.) is strictly positive real ISPR, i.e. the actual regressor 4E PE as in part (iii. However,
II1, (.% ) is strictly proper, exponent ially stable, this require,, 4, * -I4'c which is only possible when
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tiilt ics tl~'n It L I~t~l and Inhlidctriit is III talie (1iti ii:' Jik, itim I% o o o 9 4

phisence o ll itsiL'nilual in A'II tuiltatidtiicul I ldh'10Sc1s.199

n10t i ckilic pi si.,sicilt c\citatioti. ittI doc es iL'reit Althotigh a positlItc constant I% SPIR. and hience.
sonlic is pl-torlI Itilol Int it'ln. i.e. as' ill .44), thle sattisfies (SI1I. conldition (IN lis still tujtied lot.
fot ekno0%\ledge oif all t~lipet bo11und onl In *1. which is /I,, (A ( 0 it, tic S PR.
nt ItIoodiI]ictilIt ito ob tain.M *litit!d I eitardatII i does Ihs discthclalinets lead it-it " a\ It oil (lie global
han11dle boundedlck disturlban1ce. thec SPR condition is appr oach t\ pitfied b\ I1hcorcint I to thc establish-

still reLJIted ment of local siabiltt\ icstilts "' hicl at c robust' to
untnlodelcd d1\1nanuIcs Mnd boundedCI~ disturbanMces.

(( Ili puirsw it - NIR , opijuon

5I 0CA[ 1 SA1111 11N ('()\I)[I 10N1
t'Wl dI 1)1,111 poiln. li IhC NItIVS Inl tis section %% indicate a mlealn of obtaining

011/1 aI if0/ looks of / Ii.% i.. local staiblil\ conditions. VTo clarift thle distinction

'~ ~"'~"~ ~between local and global, consider, for csarnpk.
result (it) of Theorem I. This result holds if

The it';of tills aphorism is to disert any H*1 c SPIR. I/*, e~poniniall\ stable. (ca. -' )e Wl'j.

SP ~ ~ ~ ie 1R condition. simpl will no doPmjr eIE. and I1t01 < f. Aside from the difficulties in4
4 SPR coditin siipl wil notdo a a mjor establishing SIR adPE. all the conditions are
building block in adaptl~e control theory. But that virtually free of any magiuecntatsad
does not mean a total abandonment of our aim; it - giuecntans n
* sggets.ratera rdirctin. e soul be hence. are 'global' conditions. In every practical

suggsts raher a edirctin. e soul be case, it is more than likely that 'magnitude
establishing at different path to the 'stars.' For now, inomtnisailbeeg. piibudsn
howeser. %%e will remain earthbound and address Ic n ~OI swl sabudo h
the restrictii.enes.s of the SPR requirement. gains1 o, . ll-*, and IftO. Far elasl a ud on979e

A ncesaryconitin fr H e PR s tat ~~.s) shows robustness properties for minimum phase
have a relative degree of one. As pointed out by
-Rors nd o-woker 192).thisimpsesthe systems with bounded output disturbances. Dead-

requremnt hatthereltiv dereeof he lan is zone and projection mechanisms can handle small
reqireenttht te rlai~cdegee f he lan i unmodeled dynamics as shown by Prals (1983)and

known. e.g. examine the effect on the plant P in Smo l8) ono n oooi 18ab
(28a). This knowledge. however, is unavailable due Smo 18) ono n oooi 18ab

are able to give anl estimate of the region of attrac-
to the presence of unmodeled dynamics, as assumed tion without SPR or PE in the case of high frequency
in (29). parasitics. Persistent excitation. and the resulting

The ametypeof estrctin ca alo besee as exponential stability property (see equation (62) in
follows. From 137a) this section) also leads to robustness (e.g. Anderson

- and Johnson. l982a.b, Anderson and Johnstone,
H,! (I + AG*)- i(1 + A)iIe~ (50a) 1983; Kosut, 1983). Various other gain normali-K b0L (b) zations have also been suggested (e.g. Gawthrop

T*'and Lim. 1982, Ortega and Landau. 1993). These -

theoretical results remain incomplete, because they

If Ais xpoentillystalebut s oherise do not as yet provide a useful means of assessing the
unstructured, then conditions for H,, c SPR include impact of unmodeled dynamics, e.g. a frequency

'return-difIcernc gain' (e.g. Doyle and Stein. 19N I .
(I) J E SPIR (5 1a) In this section we will show in Theorem 2, under
(2) IA(jv,)t < 1. (51 b) mild magnitude hounds, that the adaptive system is

(locally) L, -stable. This result is, quite general

Since !I,*, is dependent only on the parametric because the conditions are independent of the
model 1"., it is not difficult to find it"' such that nature of the adaptive algorithm. e.g. dead-7.ones,

it'! c SPR. Ltnfortunatcl). the drawback is that normalizations, or persistent excitation.
5S hbI is it conditioni that is almost surely violated, To facilitate the analysis we will only consider the

namics. gain adaptation alorilhmn (431. It is convenient to
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lIp tl o llJ'ill \icw \\ tl' a til c c, iti ol%

tialloollo i 21 it, the follo'ing \aIialloat l lorn., As'.tiiiiig lhat St I.,1-, sahle c obtailn ti -

%flich is Ilorle tusefill fti local analvsk: following local Stablilt"

5 -- I' I(53b ) le'ore',m 2
Suppo e P I., -stabl and ij I., IHence. there

where 'Ssis1 a constant c scth that

.=h. 7.1n -n .,V - ,e*. ( * 5301 7,1 " <,< :1. (58)

= 7r. ', ~I.I ~)= C7. ). (53d)
Under these conditions, if. for some i: < 2/(-.

Details on transforming 421 to (53) are in Kosut
11983). This form of the adaptive error svstlem is 1 (I - i:, 21c. (59)
obtained by linearization of (21 1 about e*. ,* and
n*. The linearized perturbation response is i... then
almost identical to the linearized system studied b)
Rolirs and co-%%workers 11981 ). which was arrived at % :. (60)
by a 'final approach analysis.* The remaining
nonlinear terms .,. are contained in f(tf), a ProI. The proof is entirely analogous to the proof
memoryless nonlinearity, and in F, a time-varying ofthe linearization theorem on p. 131 of Desoer and
linear operator. The characteristics of F, as well asth os of xrd ep nd o th ad pta i o n ai n a nd th e V id ya sa ga r 119 75 ). D eta ils fo r th is ca se m a y b e
those of depend on the adaptation gain and thein Kosut (193).
behavior of the tuned signals. e* and 4*. For
example, with the constant gain algorithm (43), the
linearized perturbation response is

Theorem 2 asserts that the adaptive system is
t = (I + L.M)- 0 + K *e (54a) stable, i.e. bounded inside an c:-region, provided that

i e =  L (54b) FEL,-stable and the linearized response is

(54c) bounded and sufficiently small i.e. condition (59).
No claims are made about the mechanism that

with provides F L,-stable and .iL e L,. As mentioned

1 -earlier, these are insured if the map S defined in (57)[K N -Kis L, -stable. I t is possible, of course, that iLt E L" but

F =H.*,0 - *'KN) H , .*'K (55) II.d[, exceeds the magnitude constraint of (59).
Hg( *'K1N) Hg.*'KJ Instability, however, does not follow because

Theorem 2 only provides sufficient conditions.

and where In order for theorem 2 to be of practical use, it is
necessary to provide stability of S without relying on

I passivity of H*.. We will illustrate this by using
L= -A 0  (56a) persistent excitation. Consider the system

.5

K (I +LMr1 'L (56)
i= -A.Hf'x + u, x(O)R". (61)

A =,*,*' + e*H.** (56)

N = *ii*, + e*H4.. (56d)
It is shown in Anderson (1977) that if AeRR'",

Since boundedness of (e*,4*) and stability of A = A'>0. IsPE and HeSPR then (61) is
(H*.. H,.) are established by definition of the tuned exponentially stable. i.e. there exists constants m,
system. it is not difficult to see that conditions for the .> 0 such that
stability of F and the boundedness of -, are
identical. lnfact, this follows ifand only ifthe system I(')l < niiAI.x(0)I + -fi '|ljaet)dr. (62)
S:(.x'1, W)I-" x, dcscribed by ,10

i= A,(,A - Aix), x(0) = xo t R" (57)
We will apply 162) to provide stability of S as

is stable (Kosul, 1983). Note that the system S is follows. The system S can be written as
identical in form to the linearized parameter error
system i *,")1- n. in (54). 35 x = -A,,F4,. 'x .+ A,w - Qx (63a)
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I/_ an kirs thile ,ui. no H 1. tit Ist'll .10II tle saiialiltl lotinl (53).

(c [liti he nlatuictol tile tititiCot less t1411i11iteaiity
112' I, II (b~l) I (~ I Ci~iil.!cs..is il .% tlle s~ stein .

Q ,, A '11, 1 (63d ) b(1)N( *1 t'Si INS S
III th1%is petc %%c has t. I)tCCittcdi a fitt"orks foi

* (mpilil 10 '.11 %%s ilh (61). inirlitiscls. If C 1 I an1 linu out1put theoi N of adaptike control. This
I/,, S PR. aind Q stlicient k 'smnall' t lien th 1wsstemi %io:spoint pi osides aI inea ns ito realisticitll% de-
(('3 (Cqtus alen~lth Mil S1 a ) remais oiniall teruine the robt imss propertie% of adaptive
stable. 1 hts. h\ iheoi-cin 2. an) -regionl of local algorithms Ni oreose, . input out put concepts are

slaiht C1%1 :I lie precise condition% atre stated as. closcI\ Mtetd to measurement techniques. and
iolhns . hence. can lead to tlw determination of usable

engineering techniqueIS. in control design and
en-celar 2 Ianaisk the most notable examiple is the use of Bode

I .el 11 SIR and c Ill-, it t corresponding Plots for sciflar s~stems (B3ode. 194s) anid singular
positis L0onstnt A and In as defined in (62). Then. %-aile plots for niultisrariable systems (Dof Ic and
FE L -stabC le l and E L', if Stein. 1981 . At the present time, no -similar

.engineering iheori* exists for adaptise control
n> j Il,24 , ; I )design. En route to establishing such a theory it will

4 ~ ~ ~ "* 111,I1i ,(e (64) be necessar% to resolve some of the open issues
raised herein. The possible benefit to adaptive

and control engineering design is substantial.

1I..)< (..im - oq),II,511. (65) Ac-koee-ltde,piyj.s- R.L.K. was partiatly supported by Air
Force Office of Scientific Research (AFOSR IContract F49620-

of Small 83-C'-0t07. C.R.J.esas supported by Nationat ScienceProof. Follows directly by application ofSal Foundaition Grant ECS-SI 119312.
Gain Theor% (Zames. 1966) to (63). Details may be
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In this note we combine some earlier results [1] - 141 to provide a

framework for stability analysis of adaptive systems. We consider here the

continuous-time adaptive control of a scalar plant* with input u and out-

put y. described by

Plant: y= d + Pu (is)

Control: u -e'z (ib)

Adaptation: 0 Yze, 0(0) e RP  (c)

". where P is linear with strictly proper transfer function P(s), d is an

external disturbance, e is the adjustable parameter vector. y>O is the cons-

tant adaptive gain, z is the regressor (information) vector consisting of

filtered measurable signals, e.g., u, y. and references, and e is an error

signal which drives the adaptation. System (1) can also be described in an

-n error system form (e.g., [7]. [81) by proceeding as follows.

Define the parameter error by

P8:- e- e* (2) 6
~-

where 6 0 R is a constant vector of tuned parameters i.e., the

- parameters that would be selected if the plant P were known. Using (2) we

can rewrite (lb) as

u -- - v -,

• ":- 0}a '-

0 Extension to NINO plant is straightforward. e.g. [3 ).
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where v is. the .ptiy.e ttrj...eyrr signal. An equivalent represenits-

tion of (1) is given by the adaptive error system depicted in Figure 1 and

described by:

0 W c - H v (4a)
ev

V Z'O (4c0

o = ze. e)(o NO6) -e (4d)

* where (cot Z . are the outputs of the tuned system which is defined as_

system (1) with control a - -e.z.. The operators B evand R vare linear

*with strictly proper transfer functions BHe (s) and B Cs (), respectively,

which are dependent on the tuned parameter 0.. From the definition of the

tuned system 133, [41, it follows that R Cv s) and H Cv a) are exponentially

* stable. By the same reasoning the tuned signals ca(t) and zoCt) are

bounded.

I + -

+ e~t)z + e

e~(t)

Figure 1. Adaptive Error System
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One of the very useful features of this error system is that the non-

linear effect of the adaptive algorithm can be analyzed separately from the

analysis of the tuned system. The tuned system represents an ideal which

would be achieved with the given structure of the adaptive control. Bence,

the algebraic design procedure is separated from the nonlinear stability

analysis. It is convenient, therefore, to view eo zo, and 0 s 'inputs'

to the error system. The assumption, naturally, is that es and zo are well

,behaved with I all. Note that 6 need not be small. In the ideal case.

assuming perfect model following and no disturbances in the tuned system,

* ea(t) - 0. If the disturbances are of a special kind then e(t) -> 0,

i.e., the tuned system exhibits servo action. The more realistic case, how-

ever, is when e. L. due to bounded disturbances which cannot be asympto-

tically rejected.

Global Stability Condi-tions

By global stability of (2) we mean that all bounded inputs cog zoo

and e0 produce bounded outputs e, 6. and z. In general. no restrictions

are placed on the initial parameter error 0 other than boundedmess.
0

Sufficient conditions for global stability can be obtained for (2) using
passivity theory (e.g., [5], p. 182). A detailed analysis can be found in

[31-[41. One of the conditions is that Be (a) is strictly positive real

(SMR), i.e., H (a) is strictly proper*. exponentially stable and there
ev

exist a positive constant p such that

Re B (ji) I PI V .1 (a)ev

*Whea B (a) is proper but not strictly proper, then SPR is defined as
ev

Is Be (Jo) a > 0. V, a a R.
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Unfortunately. II (s) a SFR is not robust with respect to even mild modeling
cv

error, particularly high frequency unmodeled dynamics 16). For example.

H (s) a SPR implies that the relative degree of B (s) cannot exceed one,
ev ev
from which it follows that applying this restriction to (1) imposes the same

relative degree restriction on P(s) as well. This is unrealistic, even in

this simple example.

Local Stability ConLditions

Conditions for local stability require not only that the inputs e,

zoo and 0 are bounded, but that these bounds are not arbitrary. The local

analysis is facilitated by transforming the error system (4) to the

variational form

x = L- Gf(x) (6a)

where x, zL& G. and f(z) are defined by

:: O f(z) := (6b)

(L \V)L  * : -( z meL J 16c1

SO(L L 0)

Bevll-z INl) B ev zI"

G : nv (I - z; aN) a:11,1 (6d)

* -K
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.ot -I

N: z 4eev (6e)

M : Nz*1 (6f)

OU

K :f (I + LM) L (6g)

and where L has the transfer function,

L(s) T (6h)
CS

with y from the adaptive algorithm (I). This error system (6) is arrived

at by separating the nonlinear cross product terms in f(x) from the linear

terms in xL . We shall refer to xL as the response of the linearized

system. This is almost identical to the linearized system studied by Rohrs,

et al. [6a), which was arrived at by a 'final approach analysis.' Note that

in this case the linearized system is the input to the nonlinear system.

The operators K and G are linear and time-varying due to their dependence

on the tuned signals. If the linearized response IL  in (6c) is small. and

if the nonlinear term f(z) is suitably restricted, then intuitively, I

would be attracted to some neighborhood of I The following theorem makes

this notion precise. We use the notation y and I I to denote L

gain and L.-norm, respectively.

Theorem 1: Suppose there exist finite positive constants X. a, and 6(s)

such that

73(G) X g ( 1/a (7a)

IxI (C() f(x)I (e1sJ (7b)

'then
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IL l. S(-g s ) (7c)

implies-

Hall. b(c). 17d)

Theorem I follows directly from the linearization theorem of [5, p. 1311. j
Theorem I asserts that the error outputs x of the adaptive error system

are L -bounded in an e-neighborhood of the linearized response, provided

that the linearized response is small enough and that G s L.-stable.

Condition (7d) shows that the actual response can be arbitrarily close to

the linearized response. Since Theorem 1 provides sufficient conditions.

instability does not follow if xL e Ln  but exceeds the magnitude

constraint of (7c).

The function 6() in (7b) can be determined from the definition of

flz) in (6b) and the norm selected. For example, if the norm on Rn is de-

fined as 1x1 - Max Ix l and Ilxill- anplx(tl, then
I t

6(c) * (8a)

and using the corresponding induced matrix norm, we obtain

5 = M ax ( si t 2 1 ,

S - so Ilz*llk(1 + a)) (8b)

k( + a)

where

to ] max (Y(Iey), y.( zv)}

I .y.(N), k m(K) 1Sc)
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Although Theorem 1 provides conditions for local 1O-stability, these

do not Immediately provide a rejion of attraction. i.e., bound& on too so#
and o. These bounds in turn are determined from the set of allowable

reference commands, plant initial conditions, and disturbances. Since *.

and z are bounded by predetermined performance goals of the tuned system,

it follows that 00 is the unknown driving factor governing the size of

IIIL 1 . That the initial parameter error vector occupies this position of

villainy should come as no surprise. One way to offset large initial para-

meter errors is to keep the adaptation gain y small. This has the effect of

reducing large system transients, however, this may be less than prudent if

the system is initially unstable or lightly damped.

No claims are made in Theorem 1 about the mechanism that provides

Le and G e L -stable. However, it follows from the definition of the

tuned system that e t L., z*a L n, and Hy, H £ L -stable, thus, N in

(6f) is L.-stable. Hence, a term by term inspection of G (6d) and xL

(6c) reveals that xL 9L and G a L o- stable, if and only if eL a L!.

Looking at (6c) we can also describe eB(t) as the solution to the

differential equation,

C(t) -y(M)(t) + 7 V(t) (9)

with w zee and C(O) Q e. Referring to (6) and (9), the operator K is

equivalent to the mapping from w into C. Hence, the stability analysis

of (9) is of fundamental importance.

Persistent Excitation and Exponential Stability

Equations similar to (9) have been studied by invoking a persistent

excitation condition on z (t). The following definition and lemma from [1l

provides the basic result.

Definition: A regulated function f(.):R+ -) R n is .ersistently excitina,

denoted f a PE, if there exist positive constants al. a2# and 03 such that
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1 n~S f(t)f(t)'dt .02 lot Vs t (10)

Lammaj: Consider the differential equation:]

~()=-yf(t) (Bf-fV(t) + YV(t). t2 0 (ii.)

If f e PE and B(s) e SF11 then the map (Q(0),w) I-) t is exponentially

stable, i.e., there exist positive constants a and X. such that,

IC(O)I +.f me I(tId (11b)
0

The usefulness of applying Lemma 1 to determine stability conditions

of (9) Is made apparent by writing B as,ev

B = +3 (12)
cv cv cv

whore H e is the nominal representation of I e and e3 is the deviation

induced, for example, by modeling error. Combining (12) with (9). and using

the definitions in (6) gives.

9 y* ze' * QC + TV(1a

where

N~ N- BID zz 9 2 03 z', (13b)* v *V * v* V*

46



If Ilev (a) e SIlk and to e PE. then using Lemma I gives.

,t) . me-)tlO-t w(%)ldv (14)
0

Hence. k from (8) is,

k = y(K) (isa)

and from (14) with replaced by "L we get,

1IILII ,  1- 1mq) 11%oI + -rallz*eII I)] AlSb)

g provided ymq I 1 where

2q = IIzII. .(H*) * +Solz.ll.eII" . 1(Q). (1sc)

Combining (8), (15). and Theorem 1 gives the following result.

Lema 2: The adaptive system (1) or (2) is locally L-stable if for some
6 ( 11g.

tI001 +m Irlz~e,llI

a1-ga)s >0 (16a)

and

yaq a (16b)
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I7

Lemma 2 together with (15) and (8) provides an esLici pejpoun on

Sand the amount by which can deviate from a nominal B
L l0 ev ev

which is SPR. If the bounds are satisfied then Theorem I asserts that the -

signals in the adaptive system (1) are all bounded.

Unlike the global stability case where the bound on the deviation
ev

is severely restricted, the bound here can be large.

Concludiny. Remarks

The stability analysis provided here involves establishing the

exponential stability of a differential equation (9) which arises in the

study of most adaptive systems. Although the connection between exponential

stability of (a) and persistent excitation is known [i], it is important

here to obtain specific formulae for the rates and gains involved, e.g. (8),

4 (15). (16). Other methods to obtain these values can be found in [9] and

[10). Note also that Theorem 1 only requires LM-stability which is

certainly provided when (9) is exponentially stability. However. LW-

stability can be obtained by using a nonlinear adaptation gain in (1c),

i.e., e yh(z.e). For example, h(zoe) can arise from using a dead-zone.

leakage, or normalization [11]. Such schemes can be incorporated in the

general framework presented here but require further analysis in order to

obtain explicit signal bounds.
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M 1AC 2. NOTATIONl

*The question is examined of when as adaptive Let Lo denote the set of Lebesgue integrable
control system is robust to unnodeled dynamics and funclions V(.): R -> R with finite norm 11i1slE

* unknown bounded disturbances. Conditions are 4P

presented that ensure the eistence Of such x I lzt IId t I P for p (l.-) and 11ii,11..
robustness properties, but only locally; i-e.. &up tx(t)'. where 1.1 denotes a norm on Ra.
resthictbons are 'placed on the behavior of signalsI in iary lt L dnte he xtnonf
the ideal, perfeitly tuned adaptive system. Local.Mi.yltL-dneth xnjgo Lo
L.-stsbility is investigatedwben certain tuned consisting of funflions a(.) such that xT a E'. VT
silinals are assumed to be persistently exciting. 2 0. where A..TM denotes the truncation of xrt)

at T. i1.0,; a T )M - X Mt for Ist Ij T. an xi0 for t T . The norm on L is denoted by'
1. INTRODUC ION either Ilit T 1 or lii P* P

Theoretical investigations on the stability of 3. ADAPTIVE ERROR SYST~
adaptive control systems have focused almoat entirely
on developing conditions that guarantee ulobal
stability. e.g.. [11-131. These results are global Is thia section we Present an adaptive error
in the sense that initial conditions end external system which is representative of a large class of
signal magnitudes need only be bounded. Specific adaptive control systems. The error system will be
bounds are not required. In addition, the results presented in two forms: a parameter variational foxm
provide sufficient conditions. One of the conditions and a full variational form. The parameter
is that a particular subsystem operator be strictly variational form was developed in detail in 15b] and
passive with finite gain or, in the case of linear- is *xod for global stability analysis. The full
tine-invariant systems, the operator is strictly variational form. to be developed here, is used for
positive real (SPR). This condition results from local stability analysis.
application of the Passivity Theorem; specifically.

* the adaptive system can be reconfigured into two
subsystems: a 'feedback' subsyatem (the adaptation 3.1 Parameter Variational Error System

* law) that is passive, and a 'feedforward' subsystem
* which is required to be SF!. This condition tuns TO facilitate the development of the error

out to be quite restrictive. In the first place, the system, consider the simple model reference adaptive
SIR condition necessitates that the system transfer controller (IIRAC) depicted in Fig. 3-1 with:
function (is the scalar case) have a unitary relative
degree. As pointed out',by itohrs. at &1. (41, it is uncertain Plant
virtually impossible to guarantee unitary relative
degree for an actual system. Secondly, the SF! y -d*Pu 03.1a)
condition'has extremely limrited robustness to
anmodeled dynamics (5). d :external disturbance *plant initial

In this paper, conditions are developed that conditions
Suarantee the existence of localm. stability sad
robustness properties of the adaptive system. I.e., Reference Model
conditions which take into siount the size of initial
parameter error and external signal magnitude&. yr - (3.1b)
These conditiona are Imposed-on certain subsystem t r

operators, which have a time-varying dependence en r :reference command
signals that arise from an ideal fictitious system
where tte adaptive Boise &re perfectly toan to the Adaptive Control
anknowt t to be controlled. The mechanism for
local $ts. Ity which is examined here is that of u - (Wa* (3.10)

* persistent excitation (71. 11I. Under these 1 2
conditions. we develop a specific bosed en model imaptv gia. a eresr-
error which *users& conditions for local saebility. 0t dpieail.I : erso

*Partially Supported by the Air Force Office of S onUe, B 0 (Ei
Scientific $@search IAFOSII) under contract P4Ri2O-83-

C-0107. 50 a :- Y



fir... I lt ad a IjyA a~ j j ,Isj by st5sti.itt. ii to e If@ul I $Va~lable Cabe it-I I-s
Immediately.

to it (3.2) One of the very useful features of this error
&)slow is that lbs nti,liove effect of the adaptive

.h~ere 0. - (0 . is a constant vector of olfloriths Cam be analysed sepsaaely from the
t-ne gin; T.ot values that would be selected analysis of the tusied system. The tuned system

it the plant P were knomu. Using (3.2) we can represents an ideal which could be achieved with Cho
Srewrite 03.1c) aa given atructure of lb. adaptive control. Nonce. the

algebraic design procedure is sparated from the
U 9 * - V (3.3) nonlinear stabilitly analysis. It is convenient.

therefore. to view go, ~. ad0 a iputs' to

V 912 the error system. The ssumptin., n turally. is that
soand to are well behaeved with a* small. Note

where v is the adaptive Centrol yrror signal. An that 00 need ot be small. In the classic case.

equivalent representation of (3.1) is gives by the assuUsing erctmodel following and no disturbances
U daptive error system depicted in Figure 3-2 and in the tuned system. soft) -0. If the disturbances

Jc.ir ibLJ b): are of a special kind then e,(t) -) 0. i.e.. the
tuned system exhibit&saerve action. The more

c e. - H V (3.4a) realistic case, however, is when a L. dne to
ev

hounded disturbances which cannot be asymptotically
a e 'j' 8 V (3.4b) rejected.

v zO1. (3.4 0

- LC(.d 3.2 Global Stability Conditions
004Lt(.d

Conditions for global stability require that
where (e __._ SOreteoupt,_fthoe _vt

shon e~ ae te ~tpus o th tued ystm. (a) a Sli. Thia arises because proofs of global
ashw in Figure 3-3; 0 0 is the initial value of a~bility utilize passivity theory (e.g.. (91. p.
the adaptive lain error, and..e~ H * U and L are 182). A detailed analysis can be found in (111
the interconnection ope rr. aiO i simple XRAC Unfortunately, though of theoretical aignificance.

L case considered here (Fig. 3-1). the tuned signals these type of results do not offer any practical
are: engineering guidelines. The major reason is that _

-B (a) e SPW is not robust with respect to even mild
=, (i 0+Po) d moseling error, particularly high frequency unmiodeled

-1 dynamics 14]. Since 3 (s) a SM implies that the
+ [01 + Pool) P0. - a r (3.Sa) relative degree of B fl) cannot exceed one, it

follows that appluingeyThia restriction to (3.6a)
- rI'(. imposes a unitary relative degree restriction on

P(s) as well. This is unrealistic, even in this
and the interconnections have transfer functions. simple example.

= ( *P~)S -lAnother view of the restrictiveness of8 a

(s jePs (.a SPR is from robustness theory, e.g.. [is). SIjppose
zv ~ -l ~ ,, (3.b)that P(s) in (3.1a) can be expressed as belongingl

a*z (a) -M +P(s)Oe 1 ) P(S). 01 36) to the set of transfer functions

p; L(s) - (1/all (3.60) F(S) - (I ~)Fs (3.7a)

Although the error system (3.4) has been I& (jw)I j () . IV" a 3R (3.7b)
developed here for a very simple NRAC system, the
form of (3.4) is generic and applies to practically Nence, i(s) is a nominal model of P(s) and A(s)
all single-input-single-output adaptive controllers represents modeling error. e.g.. high frequency
and filters (SI. Moreover. the extession of (3.4) to usnnodeled dynamics. We can mow write
the multivariable case requires only that v and a
are vectors mad that U and a are + 4 (3.8a)

- multivariable of compattle dimeniloms. ev ev ev
Specifically. (3.4c) and (3.4d) areo replaced by where the nominal is.

v - Z' (3.40)' 5 (1 + i e )-l a SWR (3.8b)

0- * + 25 (3.40)' and the deviation induced by modeling error Is.
0

where Z is a block diagonal matrix of appropriate ioef *1* S)- (I4 fo 3 )i A
dimensions each that ew ev 0 (.80)

Z - dias (*I. ... a~ (4. It is shown In 151 that the largest tolerable li~a)

where the regressor vector is is (3.7b) to ensure * ew a SPR is bounded by

&W.)( (3.9)

SIM) 3.401 Again, this is unrealistic and is violated oee by
Some@. east adaptive setrel channel Is gives by the moat mild form of vinmocdeled dynamics. Note that

(3.9) and the unitary relative degree restrictiou
a ~ i-. i*I .. a(.g both necessarily aris from the $PIR condition.

* I& this paper, the ofesim analysis will be
illustrated by using the error system of (31.4). The

5 1



* Th Ce -Fro 5)1ot (3.4) can be tifurmed to She 1-ll (4. ~3)
iollogiffi Variations' form Which is more useful for
local stability analysis, i.e.. (it) In odditisen, it. for some p a l..

L C~s (.1.) constent I sumch that.

her LC 4316 Y p ( 2/s. (4.4)-
thern

I a(2 : (4.5)
0 \z *1 roo!

(3.10Ob)
Theorem 4.1 is based on the lineagisatiom

Its 1:0 theorem of 19, p. 131). Ihe proof. as specialized
Lv V L here. is in Appendix A.

S zv * (3.10c)

e * i Remarks

" v(1 toa Ki) BNe a aK (1) Theorem 4.1. part M,) asserts that the
IV, R VC L.-bounded in an s--neighborhood of the linearized

KN -Kresponse. provided that the linearized reaponae is in

with L. and it small enough (4.2). and that G a L;
stable (4.1). Condition (4.3) shows that the actual

N~z 4e3l*c.~ response can be arbitrarily clote to the linearized

(3er ' response, if Ila 11 is small enough (4.2). Since
Theorem 4.1 . part (iT. providea sufficient

N : Nz(3.of) conditions, instability does not fallo if a L a
but exceeds the magnitude constraint (4.2).

(1 -Li) L(315 (2) The results in part Mi) are stronger thanI (I+ L) L 3.1g) n part Mi since they can only be applied whe
anLs.Loig t(. oR

and where L has the transfer function. L for soe e zw a . Loig t(310). this can
oily occur if a e aLn which. in practical

L(s) -1 (3.1011) situations. alm osat novel occurs due to the presence
aof disturbances in L.. leace. part Mi) of Theorem

with 3 from the adaptive algorithm (3.1d). 4.1 does not offe r ay practical advice and we will -

The model (3.7) is arrived at by separating the fou ony npat i)
nonlinear cross product terms in f(a) from the () Fo 42.telretuprbudo
linear terms in IF e shal refer to N as the 113 I1 is 1/g hihocrswo . /.
response of the I aiedstm. This IT almost L 5 3/g whc ocrs he a=1
identical to the linsearized system studied by Rohr&. (4) Although Theorem 4.1 part Mi provides
et aI. [4a1. which was arrived at by a 'finalcodtnsfrlalL-ab iy.hee ost

* approach analysia.' Note that is this case the coneditons fovloca Lataiity these o note.
* linearized syatem is the input to the nonlinear imdalypodeagj_8 1Ai.I..AU ~.

sysem(3l~s. heopratrs K nd G ae inar bounds on ee. to. and S . These bounds in turn
andstime(3.vayin due toetheirs dependc on te tunedr are determined from the act of allowable reference
sanal tie-ar.n ue tohis r mo nd nc (310 w tl no med commands, plant initial conditions, *ad disturbances.
uinlze to deeop. local stablit condi ios.e Since e ad to are bounded by predetermined

utilzedto dvelp lcal tablit conitins.performance goals of the tuned system, it follows
that I is the unknown driving factor governing the

4. CNDIION FO LOCL SADIIISize of: Ii: Ii.. That the initial parameter error
vector occupies this position of villainy should come 4~
as no surprise. For example, if 0 is small (order

* If the linearized respose z in (3.10) is t.) thnteaatv Iytem says mear the tuned
small, and if the Nonlinear term %3 M) isa suitably sse o ml odr a)ipt *
restricted, then intuitively, a would be attracted () N lisaemd mTerm4lpr i

to om neghor ooc a Te olwigthoe about the mechanism that providesr aL a Le m
makes this motion Precife.Lad a

-L -stable. lowever. it follows fON the definit ON

* Theorem 4.1 oT the toned system (1.2) that *e a L . so a L.,
(I) If .3 Gonset saas that, and at 8 .U a L.-stable. thus. X Is (3.10f) Is

L-staMe. Ramce, a term by term ispectiom of 0
y.G I.(4.1) (3.10d) and a (1.100) reveals that a L a L. and

G a L .- stable. it sod only if:
sod if

ha -I- a a 4 sL a .( a*a/2). a. a (0. 2/a (I (11.) 0 L_. a aR
L42 0 0

and *-

I a L -stsblo 44.6b)
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4,1t

Suptpose that a tuned solution OsaI exsts.
Let t~t) denote the solution at time It of the The usefulness of applying Lemma 5.1 to

*difterential equation, determine robust stability conditions of (4.7) in
made apparent by proceeding as in Section 3. i.e..

*-ht(Hlit II) 4 W( t) 0 (4.7)

Ihrn a e 1n an Ca I ta eifnd 7 where U Is the nominal reproesatation ofI
cL toall C(O) ga and IF a L cv

and H is the deviation induced by modeling error.
Combiathg (5.4) with (4.7). and using the definitions

* Proof: in (3.10) gives.

* Using the definitions of K and N in (3.10). ov 03*t,~* *w(.
if 4(0) - 0 then. (4.7) represents I w VI1> C.I j
Thus. L c L -stable if w 1-) 4 c L.-stsble. Also. Where
if C(O) - iB and vw toe the 9~ from
( , s 3.10c'I Bence. without any further restrictions on . -aHa)(S6

* a it or zoe* a L:. the result of Lease 4.1 is
0~slihd If 0 (a) a SPR and a~ a SFM. them (5.3) of

Lemma (5.1 aplied to (5.5) gives,

Remarks t~) ,m~~0l*. ~t)~~:

* system (4.7) aa being crucial to obtaining local
L stability conditions from Theorem 4.1. This Therefore, if Q has a sufficiently small &im then

condition is not sufficient. Even if the conditions WO(). w) 1-) 4 a Lio-stable, and hence, the adaptive
of Lemas 4.1 are satisfied the adaptive system is system is l ocally Loi-stable. Specific conditions are
locally stable yrovided that Ila II, is small given as follows.
enouth. i.e., (4.2) must hold. ilknethcless,
establishing (4.9) is a first step.

Recall that Ila 11 is 611if is Theorem 5.1
small, hence it is macessanl to control the size of
these signals. Comparing8 in (3.100) to (4.7). Suppose 34, a PE. 11s) a Spit. and hence, from
some of these magnitude conditiona coo be secured by Lemma 5 .I CM in (5.5i is bounded as shown in
lowering the adaptation gain. i.e., the sorm of the (5.7). Then, the adaptive system (3.10) is locally
matrix B in (3.1d) or (3.10h). La;-stable if. for some

a a(0))

S. PERSISTENT EXCITATION T 2( M q (5.8)

P1 where
*In this section we examine persistent excitation
as a mechanism to provide La-stability of (4.7). and q - i IlisI 1 (5.9)

hence, local L -stability of the adaptive systemX

(3.10). and the operator F has the integral form,

Definition 18J (F)t .~ (t--) a* a~( ',a)(v 4-

A regulated function f(.):3 -) 1 is 0(5.10)
* eraisteittly exciting. denoted f a PE, if

positive constants a,1 2- ad *3 such that Pof e pedxa

* 
1 ~ ;*03  M) f(tldt .1 a 'In ws 4

(5.1) Rearks

* The relationship between persistent excitation and a3 h -uesrp oain U masta
stability of (4.7) is given as follows, if I has transfer function 11(s). then so has

transfer function Ioae. Thug. a s (0.L is
further limited so that 1 (a-6) and a (a-6)

Lomue~ 5 13 remauin eaposentially stal e therwiss tbI L -$&is&
is (5.9). (5.10) &te infinite.

b Consider the differential equation:
(2) What Theorem 11. &@sert$ is tht if t a

4(t) --fIM 111UM( + w(t). t 1 0 (5.2) Pa. Bad it I is els enough to being1 M.S then
unsder guitableelmall gain sesditiesa (5.8). lsal

7. It f a PE and U(s) a spit then the map (UO),W) stability cam he guaranteed via Theorem 4.1. The
1-) 4 is exponentially stable, I.e.. thore exist strff of the metter is to estalishe tha t T (F is
positive constantsa sod A such that. sufficiently small despite a reasonably jet$* ov*
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fJill iSp'j P All- 12 111 (3) 6 0n a a 40J)A in 05.13) can be

Intuitivuly. it the sange of dominant Ii isil il. d ine brims swell. it

itcquetak~if , 64 Ist sufficiently sepasrated from fullows that a reast-nable app-roaimation to lb.

the frequencies where fi (jb.) Is large. lb.. y2 (F) rostes el(.1) s

at 'low' frequencies where M is approximately me. 10,upo Is (W. )I
Slit. We will formalist tbis 13tion in Theorem 5.2 2 ~ 2 1/1 1, 1
below. First . bovcet i. we need the following results l(u-w, k ) 4 ), 1

from 110) for deteraining a large class of Is (W (5.14)R
persistently exciting signals. .

Definition 5.1 (101 6. C'ONCI.tDING 3[.MARKS

A function f(.): R R>3 has a .g.e.sixi! line
* at frenencv W. of apItuhde a f (W a Cm f 6.1 Test Procedures

lam ~ ~t)J~Itdt =~ (). V s ,ITe results of Theorem 5.2 can be of practical
li (_ t-af (W.w +gtsince tbey provide the basis for developing

~ (521)robustness test procedures. The most obvious way to
apply Theorem 5.2 is to determine the model error

when a (W) tI 0. f hag a stlectral line M1 0. bound--the right hand side of (S.13)--by either
f analytical or empirical means. Ouc. the bound is

Lemma S.2 101 *found, it remains to generate reasonable estimate& of
Suppose f a L has spectral lines at the model error and compare this to the bound.

frequencies W a of amplitudes a f(W11 '*. An alternative procedure is to verify Liemma 4.1

a (W ). Then f cPE,.i by direct empirical means. In other words, we can
f utilize Theorem 5.2 to give qualitative guidelines on

rank [a. af (W l (5.12) the required spectral characteristics of in and
f Ifp then simnlate (4.7) for a variety of initial states

C(O) and inputsy w afL,. This latter approach is
Theorem___2 not theoretical perfect, but Is a practical means

to gain understanding of the adaptive system
Suppose that: behavior.

*(Al) a ePE( zo has spectral lines at 6.2 Other Mechanisms for Local StabilityE
frequencies..& 1 .. GO with rank
toaso til). ... a (sa'))p= a. Although we have focused on persistent

S ~ excitation as a means to essire local stability. this

(A2) 8 (s) a SF3 is by no means the only way. For ezample. If theev adaptation algorithm (3.1d) is modified to include a

Then, the adaptive system_(3.10) is locally L ,-stable retardation (see. e.g., 111). 1123) then L(s) in

if. for some a s(OA). 2 B (s-a) is stable and (3.10h) will have the form 1131:

bounded by, avLs -3 61

2v 2p &up Is (mk 1 where (a.b) are positive constants. This means
t*- 2(e1  + (k-6) 21 k/2that if to is a constant vector. than the

Is (i Was a a* limearized sytm(.~)i -stable by passivity
to k arguments 1131. (Note that itemis mot possible to

(5.13) prove (4.7) stable for a, constant with L(s)-
(1/s)3 as in (3.10b).) Bosce. using (6.1) together

with an. X. from (5.7) and it from (5.9). with theorems on slowly varying systems (to stays
moor constant long enough), we cam arrive at
conditiomts for local L -stability which own

Proof independent of persistlent eacitation (*se 1131 for
preliminary results).

See Appendiz C.

* APPENDIX A
DiscusionPROOF OF IlEOREM 4.1

(1) Theorem 5.2 provides aexpii movesJI a
kous co the amount by which e eam deviate from a We first show that fM) is (3.10b) has the
nomimal B which is SIPS. TbUZ. if (S.13) holds property that Ivs ) 0.
sad If II2vIIQ is sufficiently mall (4.2). ten
signals is the adaptive system arm guarateed to be atI ( a - Ifosol Is£la (A.2)

* bounded.2

(2) Unlike the global stability sea#e where She Frm(.0)

bound en the deviatigio is severely restricted fnI-( 3 1 *
(3.9). the booed here esuele quite large. moreover. 212

She booed cam be determined from the spectral. ~iII 4 1;12)11
properItie o f a Recall from Lemma 5.1 that a
end I. in 40512 rer functionts of She spectral 1;1 (1.12  1 ;12)3/2. by 03.7b)

* properties of so. 54



i -4

by holding lI i used () * 1 e )

2 Iii C(O) o [g.t)

2

" by Iii S u. This. together with the definitions of F (5.10) sad

Nips. assume jf!p.loj.oy that (A.)) holds for all q (5.9) gives,

i II!"nll "& In/ 20,-o) )ol* Ilil

If(a)i . (a2))|s. vial . ~ a(A.2s) T2 kO0
4 (q M = F ) IICUlI (81.4)

lI( )i S (9/2) I . Visl a • (A.2b) 2

Using q 7 (F) ( I from (5.1) gives,

IItl. .I L-4-Ti(F)] -1 [(a/ 2(&-e) I(O)l *

T111 11 L i1i% 4 IiGf~a)iiT.A- 7
_I I w IIf(z)ll~. by (4.1) Deuee. a I-> e .a-stabls. Moreover, using (3.3)

Ila~~ I-)' 4 B. by (4.) Benc. V A
L v I-) C is exponti Ily stable and hence, from

I Is L1I* Cg a/2) i1511 (A.3) definition 9.1. v I-) t has decaying L -memory.
T Therefore. the conditions of Lea B.1 are satisfied;

using the temporary assumption (A.2). Since R L consequently -) £ Lee-stable.

(4.2) end Ili Ll1. 1 I I .

iaill & I lz 11. + (S. e/2) isIII APPENDIX C
T_ L T PROOF OF THEOREM 5.2

c (1-s02) 4 (&_ g/2) liIT_ (A.4)

by (4.2). Since g. c12 ( I by assumption (4.2). We need to calculate the L -gain of F (5.10)
under the assumptions of the thiores. From (5.10).

ii Tl. ( a (A.5) F : x I-) y has the form.

and hence. Il1ll a s. Looking back over the proof y = Fa - Gza Bzsz (C.1)

we see that the temporary assumption (A.2) is never

violated. i.e.. the behavior of f(z) for Ila ) a where G and I have transfer functions.

(A.2b) is never needed under the assumptions of a

Theorem 4.1. This proves part i). G(s) - e*X- (C.2)

Part (i) proceeds analogouly ecept now e

the L-norm. Note that part (ii) ses llIIl. e - ev (C.3)
Since F is causal, the L2-galn of F is,

iAPPENDIX 9 T2(F) (C.4)

PROOF OF THEOREM 5.1 22:I Ilzh12 (

l lwe use the exponential weighting techniques from IIII_
19). 114). Let y denote the exponential weighting sup (by Parseval's

operation. a Illl
a a atL 2/2(y MCt) :- y (t) : Y) (3.1) Theorem) (C.5)

If a m Eu then let a denote the map a I- y. where y(Jm) and a(Jn) are the Fourier transforms

For *eample, if B has transfer function B(s), of y and a. respectively. Using assumption (Al)

them a has transfer function I(-n). of Theorem 5.2.

P V
y (JO)- G(jo)l(Jr-

Definition 3.1 1141 Ohze)U(j-j" ) (MT! 12-N 'j,_JO(C.6)

As operator :L -) L haa g lia L-.
mery if a sonegl o. againeressing function Domeo.

0(.) s L such that p p 1
2

t_ I•(JO)lI $ o(*) [ 3C CI lz(Jw-Jwb-Jell2 1 i
i(hm)Ct)i 2 Ir I (t-r)inlw)12 d:, Vt 2 0. V. a Lmo he o C?

118()IAfv-l~le.V .0 e012. lf 21(C.7)
0 (3.2)

whore

Ls .] 114) o(m) - aplas (aI opll(J.O) J"-

jim") (C.8)

Suppoe I L, . L boo decayig ,.-_mor,.
2. 2s a I

If. for some c 0, as" L2 -stable. thom 5 a L.- Thus.
s' t b l e . 1 /2l

Apply Leme 3.2 as folles: The exponentially I1i - I(J)l1 /)

weighted version of (.) is, 2
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AbstIjP"

This paper reports some preliminary results concerning robustness

properties of adaptive control systems to unmodeled dynamics and bounded

disturbances. The analysis is conducted from the viewpoint of input/output

stability theory. Generic representations are proposed for both continuous-

time and discrete-time adaptive systems and conditions for stability and

robustness are developed for each case. These conditions require varying

degrees of a priori knowledge about the plant. e.g.. global conditions in-

volving minimal knowledge and local conditions Involving more restrictive

assumptions.
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I. Continuous-Time Case

A. Global Analysis

A large class of continuous-time adaptive systems can be represented by

the nonlinear system (Fig. 1):

•t  =cot -](p)v t  vt  t t

4t = e - G(p)v (s

t {t ) t = te

where et, et, vt z R. and nt  t' e Rn. The operators H(p) and

L G(p) are proper rational functions with real coefficients in the differen-

tial operator p, i.e., (px): it. We will refer to et as the output

error, n as the I.rrameter error, vt as the control error, t as the
t t t

regressor and A(.,.) as the adaptation gain. In general, only et  and

4t are available as measurements. The parameter error rt := 7t - no.

where xt is the adaptive estimate of the true, but unknown, parameter x*.

* The signals et and t are referred to as the tuned output error and

regressor, respectively, meaning that these signals are generated from an

'ideal' system with the desired parameters w 0, i.e., nt = n*. Details on

the relation between (Sc) and the actual system (unknown plant + adaptive

controller) can be found elsewhere, e.g., []-[3]. In general, the unknown

plant is imbedded in G(p) and B(p), which, incidentally, are also func-

tions of the true parameter i*.

Since x* as well as the plant are unknown, it follows that R(p) and

G(p) are unknown. However, in order to establish conditions for stability

of (S ) it is necessary to know something about B(p) and G(p). The
C

same remark holds for knowledge about the tuned signals e and C. The
t t

following theorem gives conditions for global stability of (So). The term

'global' refers to the intention of requiring minimal, but reasonable,

restrictions on B(p), G(p). e* and C*. Proof of Theorem I is given in
[ t]

1.
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ThepreuJj: .;lbalStability

F~or the system (SeC) assume that:J

(Al) The elements of G(p) are strictly proper and exponentially

stable (all poles strictly Inside the left half plane)

WA) H1(p) is strictly positive real (SPR), i.e., the elements ofI

U H(p) are strictly proper, exponentially stable, and Re [H1100J

is positive for all c [0-)

* (i) Suppose that the adaptation gain is constant, i.e..

AQ w ) W Ao wto Ao = A' > 0(1

*Under these conditions, if e*. i* L 2\ L (). co 0) , and

too to r £ then:

(i-a) nr e Ln nr v , and >0 at the rate et - 0.

(i-b) a, i e L 2( L 4 and e~ - CZ -> 0 esp.

(i-c) v e L., i e and v~ > 0.

2 Lan

- - 0 esp.

Mi) Suppose that is perlistentlv exciting (41, i.e.. constantsa

a* a > 0 such that

i 'n~ f dt G2 J n V aR

(ii-&) Result(i holds. and in addition, Pto V - > 0 esp.
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(Ii-b) If the elements of e, *. , and t* are all in L.,.

then the elements of r, A, I, et 6, v, i, t. and

are all in IM.

(iii) Suppose that the adaptation gain is retarded, [5], i.e.,

Aow t  It l < C, c > max no1

M(t, t ) = 2 (3)Ao( t (1 -*tI/) 2 t)n I^t I c

t d

(iii-a) Result (i) holds

(iii-b) Result (ii-b) holds.

Remarks

The major difficulties in applying Theorem I are that, in the first

place, H(p) t SPR (condition (A2)) is an unlikely event in actual systems,

due to the effect of unmodeled dynamics [6,7]. Secondly, the conditions on

e* as given in i) are also unlikely, namely eZ -> 0. This condition

rules out the presence of unmeasurable bounded disturbances. Thus, the con-

ditions on et in (ii-b) remain the only realistic case insofar as the

tuned signals are concerned. But, this raises another problem: ensuring

that either t is persistently exciting (2) or that the adaptation gain is
t

retarded (3). Notwithstanding the difficulty with the SPR condition on

H(p), there are specific problems related to (2) and (3). For example:

Persistent Excitation (PE): With bounded disturbances (conditions (ii-b))

it is not known how to guarantee that a a PE. Recall that is gener-

ated inside the adaptive loop, and thus, can only be controlled from the
input, i.e., from either e or, more likely, from Ct. Since we do not

know G(p) and H(p) it is not possible to conclude beforehand if t a PE

even if 4a PE. In the special (unrealistic) case of no unmodeled

dynamics and no bounded disturbances. et - 0. (ii-a) holds and Cst aPE

M> 4t a PE. Even though this latter situation is easily ruled out, it @er-

tainly makes sense that COt a PE implies a 'local' result. That is. with

certain suitable restrictions on signal size and so forth, the system is
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robust. These arguments were formalized to some extent in 131 and will be

slightly extended here.

Retarded Update: In [5] it is suggested that the update algorithm be

retarded as given by (3). Likewise, in (81. a slow or 'leaky' integrator is

added. Although both these schemes (as well as similar ones) do give

B.I.B.O. results, they both require additional information abut the plant.

e.g., as in (3) an upper bound on Insi. These results can also be con-

"" sidered as 'local' results.

Slow Variations: Together with a retarded update, another mechanism for en-

* suaring B.J.B.O. stability is to slow the variations in (see (3]). The
t

idea follows by examining the simple constant gain retarded algorithm.

ft Aw - a t (a >o)

S-AO t H(P)nt * Aotet- t

If is constant then exponential stability can be assured by direct LTI

techniques. Thus, if Ct varies slowly enough with respect to the

dynamics of B(p) it is reasonable to expect a similar result. We will ex--

amine this more closely. However, control of Ct introduces the same

difficulties as in requiring Ct t PE, i.e., only 'local' results can be

obtained.

B. Local Analvsis

The system (S) can be transformed to a more useful form for local
c

analysis:

S(
1L ML(

where:
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1 L•! ' f(z) : ~~*~

The system (S ) is obtained from (Se) by linearization of (S ) about

and .. resulting in the linearized perturbation response

The remaining nonlincar ternis I are contained in f(x) where F is a

time-varying linear operator. The characteristics of F, as well as those

of 2L depend on the adaptation gain and the behavior of the tuned sig-

nals, eS and (see [31).
t t

Consider the constant gain algorithm (1) with a retarded update. Fig.

2 depicts the resulting system (S ) where:
C

1 5 >0, with (3)L "=-Ao8 a >=
p+a 0, otherwise

M : t* H(p) t$, + e*G(p)4*' (4)

N := e H(p) + e*G(p)

Thus, Fig. 2 reveals that is the response to pL := ( 0eee 0, 0)

with n 0 0, whereas xNL is the response to pNL := (0, 4e. C'u) with

r 0. Clearly, boundedness of the linearized response XL and stability

of the operator F require stability of the map T1, n into x, indicated

in Fig. 2 by K(no). It is shown in [31 that stability of K(uo):,q 1-> r en-

sures the existence of conditions for local stability of the adaptive system

(S ) or (9 ).
c c

Of particular interest is the degree to which it is possible to main-

tain stability despite arbitrary dynamics 1(p) and G(p), i.e.,

robustness to model error. Primary consideration is given to unmodeled "

dynamics in B(p). Let,

B(p) H(p) + AH(p) (5)

where I denote the nominal dynamics obtained under ideal conditions,

Mt c N: consequently, we may consider B to be a fixed transfer function

which is independent of us. All errors will be lumped into A H The
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desired result of the local analysis is to obtain a quantitative bound on
the worst case model error for which stability of (9 ) is guaranteed. We

will do this by analyzing the stability robustness properties of the map

*O 0~ ), thus, the results obtained will onlyr verify that local conditions

exist.

B.2 Local Stabilityj b Persistent Excitation

Assume that

~*e PE

(6)

B(p) e SPR

Under these conditions, it follows from [41 that the system

itHP)C* (7)

is exponentially stable, i.e., there exists constants a. X~ 0 such that

6t

*The following result gives a coarse bound on the model error AN.

Theorem 2

*The system Vvn 0 in Fig. 2 is L.-tbeif:

)JuM a u 1*1 :D I 1e*III*I y(G)(9

* and

V4 (A B WE a/ )/I* 2  (10)

Proofj: Follows directly from small gain theory (see e.g. 191); details are
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Remarks: Although sharper bounds can be obtained [101. the significance of

Theorem 2 is that 11(p) need not be SPR if 4: a PE. The conditions of

Theorem 2 can be determined experimentally by simulating K(wo ) for a
0variety of n e Rn. P e and e PE. This procedure can only yield

an estimate.

B.2 Local Stability by Slow Variations with Retarded Update

In this case wc will assume that is not PE. but varies slowly,

in a defined way, in relation to the known dynamics of 1(p). Let

denote Ct frozen at time t x. Let K (p) denote the linear time-

invariant operator given by,

K (p) := [I n L+p)M (p)] L(p) (11)

where

Let R denote the linear time-varying operator

R : P*(p)tt' + etG(p)Ct' - it (p) (13)

The operator K (p) is simply K( 0) with N I t (p), i.e., fixed at

C. Thus, R represents the effect of how far C is from other values

C under the dynamics of B(p) and G(p).

Suppose that K (p) is exponentially stable, i.e., there exists con-

stants a, , > 0 such that,

Id m a lulds, u a L(0.t], Vs a R+  (14)

The following result is analogous to Theorem 2.

Theor n :

The system K(wo ) is L -stable if:
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4 sup V.C14 (IS) -.-

and

y.(A li) < ()./M - /Illto112 (16)'-"

Proof: Follows directly from small gain theory; details in [31,[20.

Remarks: As in Theorem 2, the conditions here for local stability do not

depend on H e SPR, and in this case do not depend on a PE. Thus,

Theorem 3 is weaker than Theorem 2. The key is to establish (14). i.e., ex-

ponential stability of i(p). Note that with H c SPR, and L(p) given by

(4) with a > 0. (14) is established by passivity arguments. Tighter bounds

on the norm operations can be obtained [101. Also, the norms themselves can

be estimated by simulating candidate actual systems (Fig. 2).

2. Discrete-Time Case

A. Global Analysis

The discrete-time version of S is somewhat different, due to the in-
c

herent system delay k ) 1. The following discrete-time nonlinear system is

representative of most discrete-time adaptive systems:

"t et - q-)v t - lq-)v

t t - GI(q 1 )v . t - 2 (q-)v2. t

st " wt-1 + Alt, wt), wt : tet (Sd.k)

with

1'~t :t int-l' V2.t :" int-k

* 68
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The signal and operator dimensions are the same as those defined in (S ).

with q- the backward shift operator (q- O) R .In general. with a

* unit delay (k -1). (S ) collapses to the form of (S ). Specifically.
d c

the unit delay adaptive system is:

-1

C = t- G(q )vt (S d.

In this paper we will only examine S d.'Details on S dk can be found in

* [10]. _ _ _ _ _ _ _d

A.l.Adaptation Alsorithms

It is an understatement to say that the choice of discrete-time algo-
rithms is overwhelming. However, following [111.[121 they more or less

3 belong to the following almost generic types:

* Projection

IiA(Ct .W ) '(I+ It 2 (P)

Recursive Least Sanares

A(C~ ., 0K (RLS)
-1 S-1 1 ' o S

Stochastic Approximatiop

A(tt t 0'

(SA)

-ti 8-i +1It12>
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Available stability results have dealt almost exclusively with (Sdh)
where. in the deterministic case. ee* 0. with either H I(q ) 1 (or -

*positive constant) and 11 2(q ) 0. or vice versa. e.g.. 111). (The

* stochastic version assumes et has zero mean with bounded variance, e.g..

1 12].) The following theorem extends the deterministic results to the case

where eS t .2 Thus, et approaches zero asymptotically, but is not identi-

*cal to zero. Proof of theorem 2 is in [10].

Theorem 4: Global Stabilitv

For the system (S d.1 assume that:

-1
(Al) The elements of G(q )are proper and exponentially stable (all

poles strictly inside the unit disc)

WA) D(q )is proper, exponentially stable, and for some constant

6> 0.

1H( q1) 1 6 .Vjqj 1 (17)

*Under these conditions, if es e (=> Ct-> 0) and g* n then using

*adaptation algorithm (P), (RLS). or (SA) results in e. v a . 2 and n. a

provided that

0 Remarks

* (1) Theorem 4 offers no more that part Mi of Theorem 1 for

continuous-time systems, in that it is not possible to insure an arbitrarily

*large model error. The bound (18) of 6 (1 is as unrealistic as the ze-

*quirement, that H(p) a SPR in Theorem 1I in fact, 1(p) a SPR implies that 6

(1; see [21). Similar restrictive results for discrete-tm dpiess

* tons have been reported in (131 and [14).

(2) It can be shown [101 that Theorem 2 is valid if. in WA). B is

* either an LTI operator in the sector:

* I ~(q1 - !(q_)I. . vq
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where (19)

(q 1 ) C SPR

or if 11 - 1(q-) is a slope-restricted memoryless nonlinearity, i.e.,

I-1
(H1) - 11(q )v I < 6 I vI (20)

(3) With arbitrary sector conditions on H, Theorem 2 holds for 6 < 1

if the adaptation gain is modified, e.g.,

A( t , W) =mtWt , mt  (1 + l t 12)-/2 (21)

Other modifications like this can be constructed, provided mt satisfies cer-

tain conditions, e.g., if mt is a positive nonincreasing function, then
" -1

sector properties on H apply to the operator mtlt I. The required

properties of mt relate to the noncausal multiplier theory described in [9].

a Picking the right multiplier - which is only needed in the proof of

stability - is an artform akin to selecting a suitable Lyapunov function for

a nonlinear system. The multiplier requirements do, however, motivate a

myriad of modifications to adaptation gains (as proposed in (21)), for which

multiplier selection is more easily facilitated, see e.g. [141. It is un-

" clear at this time whether these modifications can acheive practical sector

conditions on B for global stability, i.e., where 6 >> 1.

B, Local Analysis

Stability results dependent on persistent excitation or retarded update

have a more 'local' character than their discontinuous-time counterparts,

and thus, have been left out of the global analysis. As remarked before

after Theorem 1, these are the known means to insure .-stability. which we

have argued is the case most related to the actual system environment.

The local stability analysis for continuous-time systems can be

developed analogously for the discrete-time case, with only minor
modifications. Thus, Theorems 2-3 have their discrete-time counterparts.

One major difference, however, is that the nonlinear term in (ii) is more

complicated due to the complexity of the adaptation gain algorithms. e.g..

V
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(P) or (RLS). Other than that. similar reslults follow for the discrete-

time case 110J.

6W
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ABSTRACT

An input-output approach is presented for analyzing the global stability

and robustness properties of adaptive controllers to unmodeled dynamics. The

concept of a tuned system is introduced, i.e., the control system that could

be obtained if the plant were known. Comparing the adaptive system with the
tuned system results in the development of a generic adaptive error system.
Passivity theory is used to derive conditions which guarantee global stability

of the error system associated with the adaptive controller, and ensure

boundedness of the adaptive gains. Specific bounds are presented for certain

significant signals in the control systems. Limitations of these global

results are discussed, particularly the requirement that a certain operator be

strictly positive real (SPR) -* a condition that is unlikely to hold due to

unmodeled dynamics.
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1. INTRODUCTION

1.1 Background

The analysis and design of adaptive control systems has been the subject

of extensive research in the past two decades [11-[101. Adaptive techniques

provide a way of handling plant uncertainty by adjusting the controller

parameters on-line to optimize system performance. An alternetive method for

handling uncertainty is to use a fixed structure controller designed to

provide acceptable performance for a specified range of plant behavior. In

principle, adaptive controllers can provide improved performance compared to

fixed robust controllers, since they are tuned to the uncertain plant.

However, adaptive controllers sometimes exhibit undesirable behavior during

* the tuning or adaptation process. For example, unmodeled dynamics can cause a

rapid deterioration in performance and even instability [11],[12). This

-. problem is not resolved by increasing the order or complexity of the model.

Since the model of any dynamic system, by definition, is not the actual

system, it can therefore be argued that unmodeled dynamics are always present,

SLad infinitum.

The main reason for these difficulties with adaptive controllers seems to

be that robustness to unmodeled dynamics was not considered as a design

criterion in the development of the adaptive control algorithm. The design

objective is global stability of the closed-loop system, e.g., [7], [9) and

various assumptions on the structure of the plant are required to achieve that

*e objective. In particular, it is necessary to assume that the plant is linear

and time invariant (LTI), that the relative degree of the transfer function is

* known as well as the sign of the high frequency gain. Such requirements are

not practical since real plants are often nonlinear and time-varying and can

* be accurately represented only by high order (sometimes infinite order [13J)

complicated models.

The need for robustness to plant uncertainty is not unique to adaptive

* control. The problem of robustness is ubiquitous in control theory and has

been studied in the context of fixed (nonadaptive) control [141-(17). These

studies rely on the input/output properties of systems, e.g., [181.[19). The
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predominant reason to examine robustness issues in this way is that the

characteritics of unmodeled dynamics, such as uncertain model order, are

easily represented. Lyapunov theory, on the other hand, is not well suited

for this type of uncertainty. Typically, plant uncertainty is characterized

by assuming that the plant belongs to a well defined set. For example, a set

description of an uncertain LTI plant is to define a "ball" In the frequency

domain. The center of the ball is the nominal plant model, and the radius

defines the model error. This set model description is one type of a more

- general set description, referred to as a conic-sector [151. The uncertainty

in the plant induces an uncertainty in the input/output map of the closed-loop

system which can, again be characterized by a conic sector. Performance

requirements for the control system can be translated into statements on the

conic sector which bounds the closed-loop systems, making it possible to check

whether a given design meets specifications, and providing guidelines for

robust controller design.

In this paper we use the input/output approach to analyze the global

stability and robustness properties of continuous-time adaptive controllers

with respect to unmodeled dynamics (although we consider only continuous-time

algorithms, the input-output formalism can be readily extended to the

* discrete-time case). By global we mean that no specific magnitude constraint

(other than boundedness) is placed on any of the external inputs or initial

Oconditons. We develop an adaptive error system of a general form, by

comparing the actual adaptive system with a tuned system, i.e., the control

system that could be obtained if the plant were known. This error system is

similar to the type used in [7,[8) where the tuned system error output is

zero, due to the assumption of perfect modeling. By relaxing this assumption

we show that the non-zero outputs of the error system are the inputs to a

nonlinear feedback error system consisting of the adaptive algorithm and two

feedback (interconnection) operators,denoted by H and H .
ev zv

An important consequence of this structure is that the existence of

solutions (e.g., tuned system performance) is separated from the stabiity

analysis (e.g., stability of the nonlinear error system). In general, the

* adaptation law is passive; consequently, if Hey is strictly positive real

(SPR), then application of passivity theory [19)4213, provides global
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L 2-stability of the map from the tuned system output to the actual adaptive

system output, even though the adaptive parameters may grow beyond all

bounds. We provide other conditions (e.g., Hzv stable) to insure the
L boundedness of the adaptive gains. Similar results are developed to

m

insure L -stability of the error system by using an exponentially weighted
passivity theory [19]. These results are summarized in Theorems 1A and lB.

As a by product of the input/output view we also obtain specific bounds

on the L and L norms of significant signals in the adaptive system. The

results are summarized in Corollary 1.

The results in Theorem 1 and Corollary 1 are not essentially new (see

e.g., [7),[8]), although they do provide some extentions to previous

results. The main contribution, however, is the fact that all the results can

be obtained from a generic error system and from the application of nonlinear

stablity theorems based on input-output properties. As a consequence of this

approach, it is to be expected that conditions for robustness will arise in a

natural way. Such robustness results are obtained, but unfortunately,they

have a limited practical use. The main limitation is that the global theory

(Theorem 1) requires that H e SPR , which in turn places an upper bound onev .

the size of the unmodeled dynamics in the plant. The details are contained in

Lemmas 4.1 and 5.2. This bound is quite restrictive and is easily violated by

even the most benign model errors, thus, verifying the results obtained in

[11), 112). To over come this limitation, we construct an SPR compensator,

based on the scheme proposed in [22) in the context of robust (non-adaptive)

control. Although in the adaptive case the supporing arguments are heuristic,
an example simulation shows a positive result.

The input/output analysis presented here provides a generic framework

within which it is possible to analyze the robustness of adaptive robust

4 controllers. We believe that this framework can be used to develop practical

adaptive control algorithms that can be more readily applied to real systems,

than the class of algorithms currently in use.

Since this paper merges ideas from several areas, it is necessary to

introduce a number of definitions and concepts.
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2. SOME PRELIMINARIES

2.1 Notation

The input/output formulation of multivariable systems is the principal

view taken throughout this paper and the notation and terminology used is

standard (see e.g. [18],[19]). The input and output signals are assumed to be

imbedded in either the normed function space

p n- Rn I i 1 2.1a)
n x [0,-)* I Ixlp -}

p. p

or its extention ..1
Ln I [0,T] + Rnj < -, T < (2.1b)lpe = x:[OT R 1lx11Tp ;

The respective norms 11-1 1p and 1l. lTp are defined as follows:

lixi,= lim IIxlITp (2.2a)
Tm

with

Tf l xltllPdt)l/p , P I,1C

0 -

IIXIITp = (2.2b)

sup Ix(t)l, p -
tc[O,T]

nn snineprdc" :

where 1.1 is the Euclidean norm on Rn. Hence, L2e is an inner product
n

space, with inner product <x,y>T of elements x, y L defined by

T

<Xy>T = f x(t)'y(t)dt (2.3)
0

and so IXIT2 - (xx>T) 11/2 . If T . - then is an Inner-product space

" with inner product <x,y> - lim<x,y>T
T..
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2.2 Stabil ity

Systems considered in this paper are described by input/output equations
of the form y = Gu where G:Lmpe I" is a causal map from u into y, alsoof he or y u wer Gpe pe
denoted u + y • The system G is said to be Lp-stable (or simply stable) if G

m nmaps u c L into y c L and if there exists finite constants k and b such
P pm

that lIGulip -c k ullTp + b for all T ) 0 and all ucLme . The smallest

k that can be found is referred to as the Lp-gain (or simply gain) of G,

denoted yp (G)

Because we often encounter LTI systems it is convenient to introduce the

following notation. Let R(s) and Ro(s) denote the proper and strictly proper

rational functions, respectively. Let S and S denote functions in R(s) and0

R (s) , respectively, whose poles all have negative real parts. Thus,

L S and S are the stable, lumped, LTI systems. Denote multivariable systems0
nxm nxmwith transfer function matrices, by R(s) n , S , etc. For example,

G c Snxm means that all elements of G belong to So  and so on.
0 0

If Gc Snxm then the following Lp-gains are obtained,

Y1 (G) y (G) = f iG(t))dt (2.4)
0

Y2 (G) = sup atG(jw)] (2.5)

wcR

where T(A) denotes the maximum singular value of the matrix A, defined as the

positive square root of the maximum eigenvalue of A*A, where * is the

conjugate transpose of A. In (2.4), (2.5) G is the operator, G(jw) the

transfer function matrix, and G(t) is the impulse response matrix.

2.3 Passivity

The frllowing definitions follow those in [19),[21J. Letm m m

G:Le + Lle and let u, p be constants with u > 0 . Then, V u L2e
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KG is passive if,

< u, G >TS (2.6)

G is input strictly passive if,

< u, Gu > >9 + PiUI T (2.7a)

G is output strictly passive if,

< u, Gu >T> p + uuiGuuT (2.7b)

(p and p are not the same throughout). When G c S Mxm satisfies (2.7), G is

4 said to be strictly positive real (SPR), denoted G c SPRm . Because SPR

systems play a crucial role in the proof of stability of adaptive systems, we

introduce the following subsets:

SPR~ m {G c S mxmIA41 [Gfjw) + G(-jw)] - ii) >0, VwcRl (2.8a)

SPR~ 0 {G c S 0mi1±.(y [G(iw) + G(-jw)'] - zG(-jw~)'G(iw)) 0, VwcR} (2.8b)

where x(A) denotes the smallest eigenvalue of A. Thus, whenever G e S mxm

conditions (2.7) can be tested in the frequency domain. Moreover, SPRm0 and

SPRm , respectively, separate the strictly proper SPR functions from the
proper, but not strictly proper, SPR functions. In the scalar case, the

* frequency domain conditions simplify because x(G(jw) + G(-JwPJ]

2 Re[G(jw)]f.

Certain unstable systems in R(s)mxm can be passive by virtue of (2.6).
mxm*In particular, GcR(s) is passive if G(s) is positive real. The transfer

function matrix G(s) is positive real if: (i). it has no poles in Re(s) > 0,

(ii) poles on the iw axis are simple with a non-negative residue, and (iii)

for any wcR not a pole of G(jw) + G(-Jw)'
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2.4 Model Error

The cornerstone of robust control design is a quantifiable bound on the
error between the model used for control design and the actual plant to be

controlled. In the adaptive control case considered here the model is a
parametric model, where the parameters are not known exactly. The structure

of the parametric model can be obtained analytically from physical laws, but
this invariably results in a complicated model. Often a simple structure is
selected because it is more convenient for analysis and synthesis.

Let P denote the plant to be controlled. IN the broadest sense P is a

relation in L m  xn i.e., the set of all possible ordered pairsSAe x le Lmadotut,.nta
(uy~cL e of inputs u £ Le and Outputs yEL that could be generated

by the plant [18). The uncertainty in the plant is denoted by (u,y) c P
Let P "L *t

S:Lpe s.ne denote a parametric model of the plant P with
parameters a Rk . The parameters can be selected so as to minimize any

discrepancies between the model and the plant, i.e.,

Inf my-P UrTp = my-P*UTp (2.9)

acRk

We will refer to ac Rk as the tuned model parameters and to P = P. as the

tuned parametric model of the plant. In general, P. is dependent on the
input/output sequence.

Most of the previous work on adaptive control deals with the case where

for every (u,y) c P there exists a tuned parametric model P*, such that
P.=P. In this paper we consider the presence of unmodeled dynamics, thus,
the uncertain plant P cannot be perfectly modeled by any parametric model

P o Since we will deal exclusively with LTI plants P e R(s)n m , it is
convenient to describe this model error in the frequency-domain. Let

Bs(r) denote a "ball" in S of radius r, defined bySnS

Bs(r) :- jG c Sm-[G(Ji)] r(.), c R) (2.10)
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Let the plant to be controlled be described by

P - (I + A)P, (2.11a)

where P c R(s)nxm is the plant, P, e R(s) nxm is the tuned parametric model,

and Snxn denotes the unmodeled dynamics. Further, the only knowledge

available about a is that It is bounded such that

a B S(6) (2.11b)

where 6(W) is known for all frequencies. In other words, while the operator

A is not precisely known, we do know a bound on its effect. This model

description (2.2) is used throughout the paper to precisely define the plant

to be controlled in an adaptive system. Following Doyle and Stein [16) we

will refer to (2.11b) as an unstructred uncertainty. Note that although A is

stable, P and P* need not be stable. Hence, the parametric model is

implicitly required to capture all unstable poles of the plant. Although this

is not severly restrictive - at least on practical grounds - nonetheless, it

can be eliminated by definng model error as (stable) deviations in (stable)

coprime factors of the plant [23]. As the subsequent analysis is not

substantially effected by this choice, we will remain with (2.11) for purposes

of illustration.

2.5 Persistent Excitation

From [31], a regulated function F(.) = Rnxm is persistently

exciting, denoted F c PE , if there exists finite positive constants

a1l 92' and a3 such that

S+a3

C9 ) f F(t)F(t)'dt a I V s e R+ (2.12)
S

The usefulness of a persistently exciting signal is in establishing the

exponential stability of the following differential equation which arises in

many adaptive and identification schemes, i.e., A
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*-BFHF'x + w ,x(0) c Rn (2.13)

nxm* m

EIt is shown in (311 that if B c Rnm B -B' >0, H £SPR~ or SPRm, and
F c PE ,then (w, x(O) j-ox is exponentially stable, i.e., a m, A > 0 such

that .1
t -

Ix(t)I -c metI(0I+j me)(r Iw(T)Idt (2.14)

We will utilize this latter result in section IV in our proof of stablity of

the adaptive system.LI

7!

85 ~



3. ADAPTIVE ERROR MODEL

In this section we develop a generic adaptive error model which will be -'

used in the subsequent analysis. This requires defining the notions of robust

control and tuned control.

Robust and Tuned Control

Consider, for example, the model reference adaptive control (MRAC)

depicted in Figure 3.1, consisting of the uncertain plant P, a reference model

Hr, and an adaptive controller C(;) , where ; is the adaptive gain vector, r

is a reference input, d is a disturbance process, and n is sensor noise.

Denote by H(e) the closed-loop system relating the external inputs w (r',

d', n')' to the output error e, as depicted in Figure 3.2.. Also, let w e W

denote the admissable class of input signals.

The objective of the adaptive controller is twofold: (1) adjust e to a
kconstant e. c R such that H(e.) has desireable properties; and (2) during

adaptation, as 8 is adjusted, the error is well behaved. In the usual .

formulations [71 only (1) is considered and further it is assumed that there

exists a matched gain, denoted by T-c Rk , such that

H(T) 0 (3.1)

The presence of uncertain unmodeled dynamics in the plant eliminate the chance

of satisfying the matching condition. Thus, it is more appropriate to define
Rk

a tuned gain, denoted by e. c , corresponding to each (u,y,w) c P x W ,

such that

H(e.)w , H(e)w , V e C Rk (3.2)

The error signal e. :- H(e.)w is referred to as the tuned error. Note that

each (u,y,w) c P x W engenders a possibly different e. . Also, it is

important to distinguish the tuned gain e. , from the robust gain ° C Rk

where

sup W(eo)w sup H(e)w V e c R (3.3)
PxW PxW
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Figure 3.1 A Model Reference Adaptive Controller
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The error signal e°  H(e )w is referred to as the robust error. It follows
00

from these definitions that the tuned error is always smaller in norm than the

robust error, thus V w c W

e = H(o.)w eo  = H(e)W , (3.4)
0

The tuned controller is, unfortunately, unrealizable since it requires prior

knowledge of the actual system H(e) (or equivalently, the plant P) and the

input w. A practical adaptive controller is likely to have a larger error

norm.

Structure of the Adaptive Control

In summary, we consider the multivariable adaptive system, shown in

L Figure 3.2, and described by

e = H(e)w • (3.5)

where e(t) c Rm is the error signal to be controlled, w(t) c Rq is theR k
external input restricted to some set W, and e(t) c R is the adaptive

* gain. The class of adaptive controllers considered here are such that the
k

adaptive gains multiply elements of internal signals z(t) R , referred to

o as the regressor, to produce the adaptive control signals,
A'

f= e zi ' i E [I,m] (3.6)

where and zi are ki-dimensional subsets of the elements in e and z,

respectively. Thus,

m
k £ kt  (3.7)

i=1
ZS

Define the adaptive gain error,

e(t) :- e(t) -e, (3.8)

k  swhere 8 R is the tuned gain (3.4). Also, define the adaptive control

error signals,
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v : z1  , i = 1, ... , m (3.9)

An equivalent expression is,

v e= Z (3.10a)

where the time-varying matrix Z is defined by

Z = block diag(zl, z2 , . .. , zm ) (3.10b)

To describe the relations among the signals e, z, v, and w we introduce

the Interconnection system HI : (w,v) * (e,z) , as shown in Figure 3.3. In

particular, let HI c R(s)(m+k)x(m+ q) , and where H, is defined by,

(e) HI ) (Hew (-Hev 
(3.11)

IFz z-zv v

In effect, this structure serves to isolate the adaptive control error v, from

the rest of the system. When the adpatlve control is tuned, 9 - 0 and v a 0;

consequently, the tuned error signal (3.4) is,

e. H(e)w = Heww (3.12)

We can also define a tuned regressor siqnal,

z*: Hzww (3.13)

In general, all the subsystems in HI are dependent on the tuned gains 8*

.I The interconnection system can also be written as,
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e - e, - v (3.14a)[i evv  "

z z, -HZV v (3.14b)

* with v given by (3.10). To complete the error model requires describing the

adaptative algorithm, i.e., the means by which ;t) is qenerated. We will

consider two typical algorithms. A constant gain (gradient) algorithm [7]:

e =r Ze (3.15)

where r c Rkxk, r = r' > 0 , and a similar but nonlinear gain algorithm:

e = r(Ze - plele) (3.16a)

k
where 0 : Rk R+ is a retardation function, whose purpose is to prevent

e from growing too quickly in certain situations. Although many functions

will suffice we will select the one proposed in [24], namely:

18mlc- 1)2, ii > c : maxme.m

p(e) (3.16b)

0 1;1 4 C

The complete adaptive error system, is shown in Figure 3.4. Note that

* the error system is composed of two subsystems: a linear subsystem ZL and a

*.. non-linear subsystem EN

4N

92I_



' I7M 7 -.

1 -- - - - -e,

UL

II 
Adap ive

* Figure 3.4 Adaptive Error System

93



4. CONDITIONS FOR GLOBAL STABILITY

The theorems stated below give conditions for which the adaptive error

system (Fig. 3.4) is guaranteed to have certain stability and performance

properties. Proofs are given in Appendix A. Heuristically, however, the

basis for the proofs is application of the Passivity Theorem ([19), pg. 182).

It turns out that the map e + v is passive. Thus, if Hey is SPRm , then

the map e. + (e,v) is L2-stable even though z and/or e can grow without

bounds. Further restrictions, provided below, cause e and z to be hounded.

* (we use the notation "x + 0 (exp.)" to mean that x(t) + 0 (exponentially) as

t .

Theorem A: Global Stability

For the adaptive error system shown in Figure 3.4, assume that:

(Al) The system is well-posed in the sense that all

inputs w e W produce signals e.v,z, e , and

~in L .
(4.1a)

_kxm
(A2) Hzv S o (4.1b)

(A3) Hev € SPRm (4.1c)

Under these conditions:

0 k

1t) If (e,. e ) c Lm 0 Lm (-4 e--o0) and (z., L L then with
2 W

algorithm (3.15) or (3.16):

ke k k
(i-a) 'ee) L2 CL , and e -*0. ,4.a)

(i-b) 2 L nL , k £ L , and e-e. -0. (4.2b)

m Lm

(i-c) L M L and v -W0 (4.2c)

94
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(-d) (z,) L , (z-z,. L M and z-z.--OO exp.
2

(4.2d)

(i-e) If, in addition, e, 0 (matched) and z, £ PE then
(8 , 9 9 e-e., v, z-z.) --- 0 exp.

(4.2e)

m tk
(ii) If (e., i.)cL and (z., i.) c L then with algorithm (3.15):

(li-a) z £ Lk  (4.3)

(ii-b) With the addition of either algorithm (3.16) or z e PE it follows

that the elements of e, e, , v,. and i are in L

(4.4)

Theorem IB: Global Stability

m Replace (A3) in Theorem I by

(A3) Hey £ SPR (4.5)

O (I) If (e., .) LmL (= e-o.0) . and (z., 2.) Lk then with

algorithm (3.15) or (3.16)

k k(i-a) (9, e)L L, LfL k , 2-4m; 0 (4.6a)

(t-b) e cLm n L m  e L , e - e.-*"O (4.6b)

(i-c) (vL,) £ ILm  (4.6c)

(i-d) (z, ) L, (z-z., e-i.) L2 L.

and z-z. --o . (4.6d)

(i-e) If, In addition, e. * 0 (matched) and z.* PE

then (s, v)--oiO exp. (4.6e)
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(ii) If (e, e L and (Z*~, L k ,then with algorithm (3.15):

(il-a) z c L (4.7d)

(ti-b) With the addition of either zEPE or algorithm (3.16), the

elements of e, g, e, e, v, , and i are in L.

(4.7b)

Corollary 1: Performance Bounds

Suppose z. and e. satisfy the conditions in () of Theroems 1A or 18.

I) Let H c SPR , i.e., - M, y > 0 such that Vg¢R
ev +

.[Hev(Jw)] 4 y and 1 He(iw) + Hey • 'I (4.8a)

Then, bounds on lei 2 and 1o. can be obtained from:
le-e~2 1 112*2 l~ 2  'eo

12  [ie.* 2 + (ieiu+p elO)' r )1 2] 14.8b) -

me'r'le. 4 e(O)' r-le(O) + 2meu2me-e*, 2/Y (4.8c)

0I) Let Hey £ SPR , i.e., : q, k > 0 such that V w R

*v 0
k~evlw) +evl-,Jw)' ] ;u Hevl-Jw)' evlJw) 1.a ]

..G v( w) + Gev(-Jw)'] • k Im  (4.9b)

G ev s) : 1 + qs) H evs) (4.9c)

- Then, bounds on le21 and mel. can be obtained from:

. e12  * me,+qi* + (ee*+q* 2 + 2k2 (0)'r e(0)) 1 2 ] 14.9d)
,. ie'r- * e rleo) c 1 , ,2e (4.9c)

8(1 + le*4qi*'21el2
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Discussion

(1) Theorems 1A and 1B give conditions under which the adaptive error

system is globally stable. Essentially, conditions are imposed on the

interconnection subsystems in H1 . In particular, H c SPRm and

zv xm are direct requirements, whereas the restrictions on the tuned

signals e, and z, . indirectly impose requirements on H and H . These
ew zw

latter requirements are dependent on knowledge about w c W . For example, if

w is a constant, then the assumption that e, + 0 (Theorem 1A-i) requires

that the tuned feedback system is a Type-I robust servomechanism, i.e., *the

transfer junction Hew(O) =0 for all (u,y) e P.

(2) Corollary I gives explicit bounds on signals in the error system.

These bounds can be used to evaluate the adaptive system design. Moreover,

the bounds allow a coarse determination as to the efficacy of adaptive control

vs. robust control. By comparing, for example, the adaptive error mem 2 from
(4.8) with the robust error meo 2 from (1.5), it is possible to obtain a

quantifiable measure of performance degradation during adaptation.

(3) Although Theorems 1A and IB are essentially the same, there are

slight difference worth noting. These differences arise because in 1A,

HevcSPR _ Hey(S) is proper but not strictly proper, whereas in 18,
HevESPR =0 He (s) is strictly proper. Thus, comparing part (I) in IA and

18, we see that in 1B, v, L € whereas in 1A, v is additonally in
m
L and v-'O•

(4) The use of persistent excitation or gain retardation is seen in part

(ii) of theorems 1A and 1B to provide the means to guaranty bounded signals.

Other schemes based on signal normalizations or dead-zones can provide similar

results, e.g. [321,[331. The effect of these conditions is to provide an

L -stability which is not present otherwise. The persistent excitation

condition actually supplies exponential stability, which is stronger than

L -stability, as provided, for example, by the gain retardation (see proof in

Appendix A).

(5) The persistent excitation requirements in parts () and parts (ii)

Le 97 A
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are different. In parts (1), z*cPE , whereas in parts (ii), zcPE • The

different assumptions arise because in parts (M) we enforce the matched

condition e.=O . Hence, z.cPE => zcPE . This follows from (i-d) where

z - z. + 0 expoentially. Also, with e = 0 , a bounded disturbance added to

the reference can cause z c PE without forcing, e. c I . In parts (ii),

which is more realistic, we disallow the matched condition, and hence,

e* e L. Thus, z c PE is the weakest assumption to make. However, since z

is inside the adaptive loop, it is very different to guarantee z c PE by

injecting external signals. Note also (in both parts(ii)) that without

retardation or PE it is possible for the regressor to remain bounded even

though the adaptive parameters may grow unbounded. Similar results have been

reported elsewhere, e.g. [24].

Robustness to Unmodeled Dynamics

Since the theorems impose requriements on the Input/output properties of

the interconnection system, it follows that the effect of model error on these

properties determines the stability robustness of the adaptive system. For

example, both theorems reoulre that H € SPRm . Suppose, however, that

H has the form, 
ev

ev

=(I+ e)ev (4.10)Hev evev

where ie is the projection onto H of the plant uncertainy operator A ;
ev cv

and H is the nominal transfer function when there is no uncertainty, i.e.,
ev

when A = 0 . Thus, H is a function of the tuned parametric model P. and
ev

the tuned controller gains e*. (See Section V for more specific formulae,

e.g. (5.5).)

Conditions to insure that H € SPRm despite uncertainty in Hey Is

provided by the following:

0M
Lemma 4.1: Let Hey be given by (4.3). Then Hey £ SPR+ if the following

conditions hold:

(i) H c SPRm (4.11a)
ev +
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(II) iev£ B (k) where V w c R , (4.11b)
ev S

k(w) < H He (4.11c)

e jHv(Jw) + ev(*-Jw)'I/o[ev"i-)]
Cmxm

Proof: Define p(.): R by

, (A) = x(A+A )

. where * denotes conjugate transpose. Then, using definition (2.8) with (4.10)

- - (4.11) we obtain

cvH OW)] =[ OW() + u j)H" OiW)]
Hv e v ev ev

u H (jw)] - (Iev (jw)];[H v(jw)] > 0

Hnece, Hev£ SPRm

Comments

(1) In order to apply Lemma 4.1 it is necessary to have a detailed

description of how the plant uncertainty A propagates onto the

interconnection uncertainty Iev . This type of uncertainty propagation was

m. explored in depth by Safonov (251 and more sophisticated expressions then

(4.4b) are available to describe the uncertain operator T4er . Section 5

contains more detail on this issue.

(2) In the scalar case (4.11c) becomes

k(w) < Re[Hev(iw)]/Igevliw)I
(4.12)

-cos J [H v(jW)](

- " Since H £ SPRm by assumption, k(w) is always positive for w c R ; but
ev

because of the cosine function, k(w) < 1 . In Section 6 we show that this

t limitation on the effect of model error is easily violated by even the most

benign type of unmodeled dynamics in the plant. Methods which overcome this
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limitation are discussed in Section 7. The requirement that k(W) 4 1 also

holds for any multivariable Rev £ SPRm To see this let IT have the oolarevev,--
decomposi ti on,

GH =GW =W G (4.13)
ev i ev ev r

where G ,G are Hermitian and Wev is unitary. Since£ r
-l (H ) = T(G ) = 7IG ) , it follows that

ev r

k(w) ([Wev ,) ]  1 (4.14)

In the case of scalar systems, the condition k(w) < I can be interpreted in

terms of a limitation on relative degree of H (s) . A necessary condition

for H c SPR is that the relative degree of H ev(s) does not exceed one

i.e., phase limited to t90°. Rohrs, et al. [12) show that this necessitates

precise knowledge of plant order, and hence, is not a feasible requirement in

the presence of an unstructured uncertainty (2.12), where the order is

unknown. In the multivariable case it is awkward to talk about relative

degree or phase, however, (4.14) expresses the same limitation.

(3) In several instances, e.g., [9],[26],[27), it has been reported that

the SPR condition has been eliminated. In each case, however, it can be

verified that the operator Hey = positive constant ,which is SPR. But,

these studies do not account for unmodeled dynamics, thus, in the notation of

(4.10), only WTev positive constant . Lemma 4.1 then provides the means to

evaluate the effect of unmodeled dynamic.
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S . APPLICATION TO MODEL REFERENCE ADAPTIVE CONTROL

Consider the model reference adaptive control (MRAC) system, shown in

Figure 5.1, consisting of: an uncertain scalar plant P c Ro(S) ; a

reference model H c S and filters with F . SW The plant is

affected by a disturbance d and a reference command r. The system eouations

are:

e = y - yr (5.1a)

Yr H r (5.1b)

y = d + Pu (5.1c)

u = - O'z = + ) (5.1d)

z= F u, = F(y-r) (5.1e)

Assume that the adaptive law is given by (3.15), thus,

e F z e (5.1f)

Let the plant uncertainty be described by(2.12), i.e.,

P-P*
A := -- BS(6) (5.1g)

where P. c R (s) is a tuned parametric model for P. Let the filter dynamics~0
be given by

1 s , s-1
F(s) = M t'7 * )' (5.1h)

where L(s) is a stable onic polynomial of degree t • Thus,

8 1(t), 02(t) £ Rt and so i(t) c R2L • Using the definition of tuned gain

(3.2) we get,
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u - e'z -
+ 22 : e'z from (3.6)

A*1 A*2

7 U---u +-- (r-y) - v

Finally,

1 1
"'" A*/L 1 1 f (5.2*2 (r-y) 1 v C.(r-y) v (5.2)

where A* and A,2 are polynomials, each of degree t-1 , whose coefficients are

the elements of the tuned gains 0*1 and 0*2 , respectively; and C* denotes

the tuned controller. The tuned system ( e-O ) is shown in Figure 5.2.

In terms of the uncertain plant P, the adaptive error system (Fig. 3.4)

• :corresponding to this MRAC system, has tuned signals:

e= (1 + PCX 1 d + [(1+PC*- 1 pC*-Hr]r (5.3a)

F( I+PC*)-Ic.( r-d)

Z. 1 (5.3b)

L1+PC*)'(d-r)

and interconnections:

Hey• (1+PC.)1P(1+A.1/L)
-1  (5.3c)

F(1+PC) 1 (1+A 1 /L)1

" H j (5.3d)
I+PC )" ( I+A.1/L) )"

The error system can also be described so as to highlight the model error

A • The following definitions are convenient:

T. : (I+P.C.)' 1p~c. :- 1 - (5.4a)
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K* Hev 1IPC) 1P(+*/) (5.4b)I

&=OCF ~1A.fr

Thus, the error system (5.3) can be also be expressed as:

e, S*(1+&T*)-ld + (T*(1+f)(+aT*)-l-r )r (5.5a)

FS*C*(1+&T*V1l(r-d)
=* )5.5b)

He = K*(I+a)(1+AT*)~ (5.5Sc)

FK*P;1(1+A&T*V'

H~ =L K~1+~(1+~~)j(5.5d)

The result that follows in Lemma 5.1 gives conditions under which

*H e SPR and H S2 Xx , despite model error; thus conditions (A1)-(A3)ev 0 zV 0
of Theorems 1A and 28 are satisfied. Additional requirements are necessary to
establish the class of tuned signals e* and z* as given by (5.5a) and (5.5b),
respectively. These requirements are discussed following Lemma 5.1.

Lemma 5.1: -For the adaptive system (5.3) or (5.5) H ev SPR 0and

H S s21x1 if the following conditions are all satisfied:
zv 0

n-i . 1 n-2 * +g(sg(s +OS +..+g*s

(lii) g (5.6c)

(iv) N*(s) is a Ksal moP0 whereom and ar5mn.st be

(iv) *(s) K 2(s) c P hr KOO( an K2(s) aemncsal
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polynomials.

(5.6d)

(v) . = deg L(s) n + deg KI(s) - I (5.6e)

(vi) a C BS(6) is such that

6W < Y := + "

V ~ eR,
n(,w) :=cos tt[K.(Ju)] R

(5.6f)

Proof: See Appendix B.

Discussion

(1) Condition (i)-(v) of Lemma 5.1 are restatements of known results,
but normally they apply to the actual plant P, e.g. (7). In Lemma 5.1,
however, these conditions apply to the parametric model P* -- not to the

actual plant. As such, they are easier to satisfy, since the parametric model

is somewhat arbitrary. This flexibility is penalized by an increase in model
error. For example, if the actual plant has a relative degree of 2, then
choosing a parametric model of relative degree 1 -- as required by condition

(I) -- incrases the high frequency model error.

(2) Condition (vi) imposes an upper bound T on the model error
associated with the chosen parametric model. This condition simultaneously ..
insures that Hev c SPR o despite model error, and that the tuned system is

stable (see proof in Appendix B).

(3) It is easily verified that T(w) 4 1 , as was discussed following

Lemma 4.1. In fact, even the "optimally tight" bound (see [25] for details on

this calculation) given by,

-[-I1-TI + (I1+T12 + 4n Re(KT/IKI) 1 /2] (5.7)

Is also restricted to be less than 1. This limitation severely restricts the

o type of admissable model error. This issue is pursued in Section 6.
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(4) To guarantee global stability using the adaptive law (5.1f),

property (I) of Theorem 1 requires that e, + 0 and z,, , c L1  for all r

and d. For example, let r and d be any bounded signals such that

r 4 constant and d + constant as t . - . Property (I) of Theorem I is

satisfied if:
'.

6(0) = 0 (5.8a)

T.(O) = H (0) = 1 (5.8b)
r

Zero model error at DC (5.8a) is certainly to be expected from even the most

crude tuned parametric model.

r (5) Let r be bounded such that r + constant as t + - , but let d be

just bounded, i.e., d e L . In this case it is not possible to guarantee

.0 , but we can guarantee that e. e L . To obtain global stability in

this case, requires the introduction of the retardation term (3.16) into the

adaptive law (5.1f), see part (Ii) of Theorems 1A or lB.

(6) It is possible to obtain versions of Lemma 5.1 for adaptive systems

-* of different forms, e.g., indirect adaptive [5]. Also, the use of

"multipliers", e.g. [4], can be accounted for as well. The multiplier

Ieffectively makes use of the availability of e as a signal; and this allows

rel deg (P*) = 2 rather than 1 as required by condition (I) of Lemma 5.1.
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6. LIMITATIONS IMPOSED BY THE SPR CONDITION

The fact that the model error bound given in condition (vi) of Lemma 5.1

can not exceed one has unfortunate consequences.

Example 1

Consider a plant with transfer function,

ab(.1
P(s) = P(s) (s+a)ts+b)

where P* is the parametirc model, with two unmodeled stable poles at -a and

-b. Supposealso, that b is much greater than a, and that a is much greater

than the bandwidth of P,(s) . This situation seems benign -- and most likely

a certainty. Comparing (6.1) with (5.1g) gives,

2 (a+b)2  1/2

1w2+a2)12 +b2 )

for all frequencies w ) (ab/2) 1/2 , thus, condition (vi) of Lemma 5.1 is

violated, and global stability cannot be guaranteed. The following example

illustrates this point.

Example 2

Consider the example MRAC system (Fig. 5.1) studied by Rohrs et al. 121.

where:

2 229
s) s-+, (s+15) 2 + 4

3
HR(s) 3 s+-

u * -ely +e 2 r
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i o -ye, ei(O) • .65

= -r e, e2(0) - 1.14022

Let r = constant and d = 0. Thus, e. * 0 exponentially when the tuned gains

are such that (5.8) is satisfied, i.e.,

29*2T(0) H ()

* Even though (.1 0.2) exist to satisfy this, He (s) is not SPR, and so

* global stability is not guaranteed. Simulation runs with r a .4 and r = 4.0

are shown in Figures 6.1 and 6.2, respectively. With the small input (Fig.

6.1) we see a stable response which tracks the reference very well. With the

large input (Fig. 6.2) the response is still stable, but large oscillations

are taking place. Larger inputs will eventually drive the system unstable,

e.g. [12J.

m In this example, if the tuned model is taken to be P(s = 1/(s+1) then

it is easily verified that model error 6(w) is greater than one at some

* frequency.
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7. SPR COMPENSATION

In this section we heuristically develop a means to obtain global robust

adaptive control. Since the SPR condition is violated whenever model error

exceeds one, a natural scheme is to construct an SPR compensator which

alleivates the problems by "filtering" the plant output; thus, avoiding the

trouble. However, direct filtering does not change the size of model error.

For example, with the plant p = (1+A)P* , let Yw denote the output of the

filtered plant, where

Yw : = Wy = Wd + (I+A)WP*u (7.1)

Thus, model error is uneffected. Even filtering Hev directly by W offers no

help, since the bound (4.4c) is still less than one, i.e.,

IHev 1 Re(W ITev )/IW Iev (7.2)

for any stable W. What we seek is an SPR compensator which only effects the

unmodeled dynamics, but leaves the paramtric model intact.

A compensation scheme, which offers some promise as an SPR compensator,

is that proposed in [22), as shown in Figure 7.1. To see the desired result

suppose that P - (I+A)Pm with A E BS(6) . Then, the compensator is -

equivalent to a plant which maps (u,d) into y where

y c Wd + Pcu (7.2a)

Pc-Pm
Ac Bs(W6) (7.2b)

m

Thus, whenver 6(w) > 1 , select W(s) such that Iw(ji)I6(,) < I • The filter

W acts like a "frequency switch" whose function is to insure condition (vi) of

Lemma 5.1.

There are two ways to implement this compensator in an adaptive system.

The first way is to use a fixed model of the plant for Pm, i.e., Pm "
The second way is to replace P with an adaptive observer, i.e., P " "

m •

112

7,



U yc

C-M

O Figure 7.1 SPR Compensation

113



In either case, to obtain the benefit of the SPR compensator, the signal to be

controlled Is the compensator output Yc not the Dlant output y. Both of

these compensators will now be examined.

Fixed SPR Compensator

Let PM = P , a fixed model, and let the actual plant be given by (2.17),

P = (1+6)P with a c B (6) . Then the fixed compensator plant equivalent
S

model error (7.2b) is:

: cc BS(6 1) (7.3a)

where

61(w) : IW(jw)16(w) +I - WljW Pjljw) 1  (7.3b)

This scheme is motivated by the fact that at low frequencies the tuned

parametric model P* is close to P; thus 6 is small and W - 1 . At high

frequencies 6 is large but (P- p.)/P, is small, W - 0 and so 61 is

small. Of course the compensator is limited if there is large model error at

intermediate frequencies.

Example 2

Example 1 is modified to include a fixed SPR compsnator with W(s)

1/(s+1) and P(s) = 2/(s+l) . Simulation results with the large step command

(r-4) are shown in Figure 7.2. Comparing these to Figure 6.2, without

compensation, it is readily verified that the instability tendencies are -

eliminated. Also, direct calculations reveal that Hev c SPRo , thus global

stability is insured.

Adaptive SPR Compensation

An adaptive SPR compensator, together with the adaptive controller, Is

shown in Figure 7.3. The adaptive controller is described by,
_.
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u - zc  , zc  (Fu F(yc-r)) (7.4a)

ec rc Zc ec c = Yc Yr (7.4b)

nc-1
F'(s) = (1/Lc(s),...,s /ic(S)) , nc = deg Lc(S) (7.4c)

and the adaptive observer is described by,

A 0  , zo  (F; u. -F; y) (7.4d)

0 = rozoeo , e°  y - y (7.4d)

Fo(s) = (1/Lo(s), ..., s 0 /L(s)) , no = deg L (s) (7.4f)

where L (s) and L (s) are both monic and stable. To generate the error0 c

system interconnection operators associated with this system, let e*c and

8*0 denote the tuned parameters with respective gain errors, ac and e ; and

let v := e'z and v := e&z be the corresponding adaptive control errors
c c c 0 0

(3.6). By analogy with the procedure used in Section 5 we get,

u C.(ryl . 1 vc 7.5)

A B.1  *1
y= - d + (1 -- F A)P~u + v (7.6)

0 00

where

A.2/LcC.=I+A.1/L c 1..

B2/Lo  gN .
8*/1 gN (7.8) -

= -•

Pa. +B.r/Lo ie

and where (A*,, A*2) are polynomials whose coefficients are the parameters in
e~c ; IB1,.*2 ) are polynomials whose coefficients are the parameters in

* 0*0 ; and N., P* and g are as defined by (5.6a). The adaptive error model is #

given below in terms of T*, S*, and K, as defined in (5.4). In additon,
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def ine:

3R I=1 (W-1) D 79
0

The tuned signals are:

0 e*c S*(1+aRT*F1 R d +(T*(1+A&R)(1+,&RT*)- 1-H r)r (7.10a)

=~ D*L - (1+&RT*)- d + D*L0I T~a(1.aRT*)- r (7.10b)

FcA*L -1P*'K (1+&RT*** I(r-Rd)]

=* (7.10c)

F S(+AT) 1l(Rd-r)J

OA*LCP;K*l~RT)-(rR1
=* (7.10d)

1O*(+aRT*)' (d -(1+,&)r)

The interconnections are:

K*(1+&R)(1+ART*)+V1 )*I~R*

H ev *~;A1AT~l- 7la
K (IR* 1+(l-W)T*D*L 4 (1+aRT*-

0o

1: P;'K*(1+aRT*)lFA*L vK*1 W(+,R*-

LCK*C1+,&R)C1~aRT*) -Fc S*(141)(l+aRT*)-
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FoP 1 K. (I+aRT. 1  FoA 2L-P 1'K(I-WI+RT* 1]

Hzo v -FoK,(l+AI( I+&RT,)'I -FoT,(l-W) 1 )l+a +RT*- (" 7.1-0

The factor (1+aRT,) appears in all the terms above. The transfer
function R (7.9) reduces the effect of unmodeled dynamics; however not exactly

by the amount anticipated, vis a vls (7.2). This is due to additonal model

error introduced by the adaptive observer. Nonetheless, the model error
attenuation is greater than with the fixed SPR compensator. In particular, at
low frequencies a - 0 and at high frequencies R = 0 , since

-1
W - 0 and D.Lo " I . Without further testing of Hey (7.11a) it is not

possible to state that H £ SPR at intermediate frequencies. Note,
ev 0

however, that the nominal value of H is:ev

IT ](7.12)
ev 0-

which is SPR o provided that K. e SPR and

Re K.(JW) > fl(_W(jw))S*(jw)I2 , w R (7.13)

Applying (4.11) to (7.11a), a tedious procedure, would give an upper bound on
model error to insure H c SPR

ev 0
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8. CONCLUSIONS

This paper has presented an input/output view of multivariable adaptive

control for uncertain linear time invariant plants. The essence of the

results are captured in Theorems IA and 2B which provide conditions that

guarantee global stability. Corollary 1 also give specific L2 and L bounds

on significant signals in the adaptive control system. These bounds, for

example, can be used to guarantee that the adaptive system performs as well as

a robust (non-adaptive) system using the same structure, but with fixed

gains. By distinguishing between a tuned system and a robust system, we

establish formulae which can be used to restrict the minimum performance

improvement possible with the same control structure.

Although the stability results (Theorem 1A, 1B) are not entirely new (see

e.g., [7],[8]), the input/output setting provides the means to directly

determine the system robustness properties with respect to model error. The

type of model error examined can arise from a variety of causes, such as

unmodeled dynamics and reduced order modeling. It is very difficult to treat

this type of "unstructured" dynamic model error by using Lyapunov theory,

since the system order may not be known -- in fact, it may be infinite.

Although infinite dimensional (distributed) systems were not considered here,

Theorem I can be modified to include them, e.g., [26). 2

The structure of Theorems 1A and 1B require that a particular subsystem

operator, denoted H ev , is strictly positive real (SPR). This requirement is

not unique to this presentation - passivity requirements, in one form or

another, dominate proofs of global stability for practically all adaptive

control systems, including recursive identification algorithms.

Unfortunately, although Hey e SPR is robust to model error (Lemma 4.1), the

bound on the model error is too small to be of practical use. Even the most

benign neglected dynamics violate the bound.

Although this paper is concerned with continuous-time systems, the

theorems carry over virtually intact to discrete-time systems. This is a
direct consequence of the portable nature of the input/output view. However,

there is an important issue unique to discrete-time systems: plant
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uncertainty is critical to where performance is actually measured, which is in

continuous-time, not at the sampled-data points. As a consequence, it may be

necessary to map the discrete portions of the adaptive system (most likely the

controller) into continuous-time, i.e., the L2-gains of the discrete-time

operators in the interconnection map, which are associated with the adaptive

discrete-time controller, would be needed rather the discrete-time L2-gains

Another area worth pursuing is the adaptive control of non-linear

plants. The plant uncertainty description (2.11) does not exclude non-linear

plants. Note that slowly drifting parameters in an otherwise perfectly known

LTI plant could yield the same uncertainty description as a non-linear plant

approximated by a parametric LTI model. All that is required is that there

exists a (possibly) infinite dimensional LTI system which matches the

input/output behavior of the plant for each possible input/output pair. Of

course, if the plant is truly non-linear, then the tuned control is likely to

be non-linear, which raises some very interesting issues for further research.

One final remark: the stability results presented here, as well as other

known results, provide global stability. This is achieved by requiring

H c SPR , a condition which is difficult to maintain in normal
ev

circumstances. On the other hand, this is a sufficient conditon; violation of

which does not necessarily lead to instability. The simple example presented

here in Figure 6.1-6.2, illustrates the point. Other examples of this

phenomena abound, e.g., [12). It would appear then, that a more valid

approach to providing a system-theoretic setting for adaptive control is to
develop local stability conditions, which, hopefully, do not require that

H £ SPR . Preliminary results on local stability support this hope, e.g.,
ev

[33], [34].
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APPENDIX A

PROOF OF THEOREMS 1 AND 2

Prel imi nari es

14 The main ingredient in the proof is to show stability by means of

passivity. Although there are many variations on this theme, a general result
is given by the following.

Theorem A.1 (Q21], [35)

Consider the feedback system of Figure A.1 below with causal operators

G 1 and G 2

2"

AFigure A.1 Feedback System

Suppose there exists real constants cis sit Gig i=1,2 *such that

CXiXt ix2 2 + 'i Vt )0 0, V x 2 ,Ot A1

for 1=1,2. Then the following holds V t 0,

2 2
(62 +6 l1 yit 2 +(eci6 2)uy21t2 uyI1u 2( 1u'2 + 21c 19"u 21V2)

+ *'~y 2ut 2(3uut 2 +. 2 lc11.uimt2) + I-1'II2 + *l 2t

+ lull 1(121 (A.2)I
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Proofs of both theorems also rely on well known results for systems

H Snxm . The results required here are summarized in the following.
0

Theorem A-2 (see [19), Thm. 9, pg. 59)

Let H Snxm ; then:
0

(L) If ucL , then y =Hu L Ln , c L y is continuous, and

y(t) + 0 as t + -

Lm  then y Hu cL n  .Ln  and y is uniformly

continuous.

(ii) If u cm and u(t) + constant c £ as t + , then

y(t) * H(O)c exponentially as t +

In order to simplify notation we drop the superstrict on Ln which
p

indicates vector size.

- We will establish Theorem 1A first. Some of the steps will be repeated
for 1B. Also, without loss of generality, the matrix r in the adaptation law

(3.15),(3.16) is set to identity. Corollary 1 is established as a by-product.

Proof of Theorem 1A

Part ()

Identify G1, G2 in Figure A.1 with e + v and H respectively. Also,
2 ev

let u1 *e,, u2  0 0, e1  e, y, " e2  v, and y2 * H v. " Using adaptive
law (3.15) we obtain,

<e,v>T < <e,Z'e>T - <Ze,e> T  <i, B>T (A.4)

I he(T), 2 - 16 (0),2 (A.5)

8-.(O) (A.6)
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Thus, using (A.1) gives,

El 61 0, 'M I - 6M 2 e( (A.7)

* Since G H c SPR by assumption, a,,y > 0such that V XcL~e2 ev +2e
<xH x>A~ 2 *~ * ~T Hence, from (A.1),ev T I~IT2- 'evx'2 YxT

~i 0 (A.8)

Using Lemma A.1, together with (A.4)-(A.8) gives,

EV 2 21E*T 2 2 1/2 (A.9)

ie-e~IT YEVE.. (A.10)

2 2
le(T)12 - 18Ie( + 21eIT VT (A.11)

The bounds shown in (4.8) follow using the assumption e*, c 1 2 .Hence,

e,v cL and a vL2

Having established that v c 1 2 *Theorem A-2 Z z Z-Z,* E 12C1L. z c 12.
* z *0, and i is continuous. Since z.*, * c L by assumption, it follows

that z c L and I c L (=,D z is uniformly continuous). Using v - Z'e with

z , 9 ' c L .- V E L Using e =e*-H evv with *cL n evcS(b
assumption), n v e L *0 e e L Hence, =Ze c L~ u# is uniformly

*continuous* v = Ze is uniformly continuous (since z is)-* v *0 since

V E L2 is established. Using v 0 -6 e - e* + 0 , and since e * 0 by

assumption, e -P 0 . Furthermore, v + 0= * 0 exp. and

*=Ze i e + Z~e + 0 ,because iand e + 0 .Using il + s Z'j with

E, 0,0 _1 Hence, e* 6*~ H ev 0 L because e* E L.b

* assumption. Thus, e t e + Zi c LM This establishes properties (i-a)-

To show (i-e) consider (3.15) written as:
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o -ZH Z'
(A.12)

w: (Z*HevZI + iHe ZI, + 2HeZe

Since we have already established that z + 0 exp. and e L it follows

that w *0 exp. Since z* c PE by assumption (provided e* 0) , w i-WO is exp.
stable by (2.15). Hence, e- 0 exp.4 , v + 0 exp.'4Io e-e* + 0 exp. This

%* completes the proof of part (1) with adaptive law (3.15).

To show that (i-a)-(i-a) hold with adaptive law (3.16) requires showing

that G :e ->v is passive. Consider the typical time interval,

I z =it E (t0,t) *e(t), c} A.3

12 = t ~ tt) u(th > c maxuo~i1

Hence,

<e,v>1  <e,v>1  + <e,v>1  (A.14)

Thus,

1 2 1 2
=ev 46. 8>1 = 0(t1)I 19u(t )I (A.15)

<e 4> + ( 1;1o/c) 8o0> (A.16)
2 2

=12 1 1 Al

1 21 2

7 *( 2  1 7 .(t 1 ). (A.18)

because 4, 6>1 0 f rom,
2
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0(t)' e(t) '

= .;(t)l2 - O(tWe.
a 2

Ie;t) - *(t)uc

= 1e(t)1(l;(t)i- c) 0 0, Vt C . (A.19)

Thus,

<e,v> 1 • .l(t 2), - I *e(to)h 2  (A.20)

Repeating the above procedure recurslvely,we eventually conclude that1 2
<e,v>T 1 2()m as before (A.6), and hence, G e I-*v is passive. The

results in (I) now repeat for adaptive law (3.16). This completes the proof

of part(i).

Proof of Theorem 1A,Part (ii)

Theorem 1A, Part (ii) is essentially an L -stability result. The method
of proof requires the notion of "exponential weighting" which is a means to

obtain L -stability of a system from the L -stability of an exponentiallydo 2
weighted version of the system (see e.g., [19), Chapter 9). We require the

following:

Definition: Given a real number = define the exponential weighting operator

by

x*(t) :• Gtx(t) (A.21)

Consider the system y * Gu. An exp. weighted version of this system is

denoted by y :* G u . Note that if G is a convolution operator with

transfer function G(s) then G is also a convolution operator with transfer

function G(s-a) . Thus, the corresponding exponentialy weighted error system

corresponding is described by
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ec - ec' - c va
* ev

Zo - Ha  va (A.22)

ee v' = Z'e=

a =cea + Zea-(;)

where a > 0 such that

Ha  SPRm and Ha Skx m  (A.23)
ev + zv 0

Using Theorem A-i, identify G with ea + va and G2 with Ha" Note that it is
1 ev

always possible to find some a > 0 such that (A.23) holds. We now examine

the passivity of GI: ea + va . Thus,

<ea, V>T = <ea , Z'e>T = < Zea, e >T
<e=, -e,, + ,:(;);">T

1 2ca 2a - 1+ a 0
seiT)i 18(0l)2 + <Ple)e; e > T=,ele IT

1 2aT 2 1 2 a 2 a
= .eT~ - a() (() 8 , *'t'IT2

2>TzIT),Z - e(O),2 -1 ale IT2 (A.24) .. -

The last line follows from (A.19), hence, (A.24) holds with or without the

retardation term in the adaptive law. At this point there are two

possibilities: either e c L or Ie(t)I * - as t + - If e L . then S

constant c < - such that le c . Then,

<ec3, Va> > 2 T(Ie(T)i 2 C2 - le(O)
T 2- C0)

S2aT 2 12 (A.25)
£ c - 7 le(O)l2

If l0(t)l . as t . then it is always possible to select an arbitrarily

large T such that le(T)u- leiT Hence, for this T, (A.24) becomes,

4(a V> IC a(.0(T). 2  li2. 1 leO~T~ ,.<es, va'T ' 1 *2=T -(T1 'el.) - 'e(O)2 -

(A.26)
1 2

.e(O),
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Thus~for some arbitrarily large T, (A.25) and (A.26) have the general form,

i e. ,

< es v'> T >-c1  c 2Q =-ccT (A.27)

where c1, c 2 are non-negative constants. Hence,

Cl 61., z 0, 2 -C(aT) (A. 28)

Since G2  c SPR+ 3 constants p, y > 0 such that
2 ev +

<X9 HO_ X>T ;PJI 2
ev T T2

(A.29)
ev T2 ~ XT 2

* Then,

C21 = =0 (A.30)

Using (A.2), we get

([1 T (e2 1-~VI/211va e42 (A.31)

12Since e* Li by assumption,

i e*i 4 CT(2f 1/2 Eieul (A.32)

Thus,

2 , 2aT 1/2

Since HO1  S wex obtain

- T
li(T)i I H Hz(Tr)v(r)drI (A.34)

a ie_*T ~T H*a(T.T)v*(T)dl (A.35)
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1 e-a iH 1) v01 (A. 36)

where H' (t) is the impulse response matrix associated with HO
zy zv

* Substituting (A.33) and (A.27) into (A.36) and noting that

e-2Tc(oT) c c1 + C 2 , we obtain,

________ 21/2I;(T)I (24 ~ 1  i*' (.)I, 1 [ie,,m + (iei! + 4ajc+c) (A.37)

Since the right hand side is independent of T, and since T can be selected to

be arbitrarily large, it follows that z e L .Assuming there is no

retardation or persistent excitation, this completes the proof of (li-a) to

(ii-d).

* Assume now that z e PE , which is a noncontradictory assumption since we

have already shown that z c L Hence,

=-Z H Z'e+ e (A.38)

Sinc Z E E P nd z, ecL it follows from (2.15) that
(Ze*, e(O)) P-Pm-e is exp. stable, thus, e, L The remaining results in

(ii-e) follow imediately.

Suppose now that the adaptive law is given by (3.16). Then, we can

write,

e* Z e - p(e)e Z[e*-H evZ,(O-O*)] - (O)8

A A (A.39)
a w - Z Hevz' 8 -P(O)8

*where w=Z e* + Z Hev e* L. , because z, e* e L . Consider the

candidate Lyapunov function V:tI-erme(t),2 .Hence,

=2 w'e-8 He -P(e)VZ (A.40)

Suppose 1;(t), as t .-. Then there exists a time T >0 such that
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i;(T)u aT- V c • Hence,

-c' 2wi. 1/2+ I zi2 y.(H )V- ( 1- /2 2V (A.41)
T VT ~~ev T ( c

Clearly, there exists a finite constant cI such that when VT > c1  VT < 0

Therefore, 9 can not grow beyond all hounds, and hence, e £ L • So then is

I and § , and again the result of (ii-e) follow. This completes the proof of

Theorem IA. Note that in this case we do not obtain specific bounds on e,

because the proof proceeds by contradition.

Proof of Theorem 1B

Part (i)

Since H c SPR , there exists q > 0 such that G := (I + qs)Hev c SPR+

and furthermore, Ge1 S • As a result we can write (3.14a) as,
ev

e = -Hev y, y - v - Gev(e* + q &.) (A.42)

Referring to Lemma A-i, let G v V-le, G = He , u 0 and
u2  -G'e +q&~ ~ -e, 2 H ev" ie + qe*) . Using (A.2) together with (A.42) and the passivityu2 =-ev

properties of H gives,
ev

I~ IeiT 1 2 212(A.43)
,el~~T2 til, U2,T2 + (IU2,T22 + 21118(o)12) / ] (.3

le(T)l c 1(o)l + 2jeuT2 •U2IT2 (A.44)

where U is defined in (4.9a). Using (4.9b) gives,

IU2IT2 4 (1/k)le* +e . This together with (A.43), (A.44) and the

assumption e., e L2 gives the bounds shown in (4.9). Hence,

e e L , e L L . However, we can not conclude that v e L2 as in Theorem IA,

part i). From (A.42), we can conclude that (1 + qs) v e L2. Since

G :- (1 + qs)H eS , it follows from Lemma A-2 that
..zv zv OL
z :a z-z. c L2 nL z e L2 and 0 . Repeated use of Lemma A-2 and the

error equations (3.14) gives the results (i-a) - (i-d). (1-e) follows from

the arguments in the proof of Theorem IA, part (1).
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Part (if)

The proof is entirely analgous to that of Theorem IA, part (iwhere

*again we use exponential weighting.
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APPENDIX B

PROOF OF LEMMA 5.1

The proof utilizes the following known results:

Definition: Let J denote a subset of S, consisting of functions in S whose

inverse is also in S.

Fact [29): If G is any scalar transfer function in R(s), then G has a coprime

factorization in S. i.e., there exists N, D, A, and B in S such that

SG =N/D and AN + BD=1.

Lemma B-I: Consider the tuned adaptive system of Figure 5.2. Let

C P. c R0 (s) and C, € Ro(s) have coprime factorizations in S given by

P* = N /Dp and C* Nc/Dc , respectively. Then, the elements of the

* transfer matrix from (r,d) into (e., z.,y, u) all belong to S, if:

(1) Q := D + NpN £ J , (from [29)) (8.1)

and

(ii) <()IT*liw)I < 1, V w c R , (from [16])

where

T, N" N /Q 1"PC,(I+PC,)"1  (6.2)

Using the definition of Q we can write H and H from (5.5) as,
ev zv

He NpQ 1 (1+A)(I+AT,) "1  (B.3)

FDp Q '1(1+aT* ) I  1

[p
zv FN Q.1(I+a)(I+AT,) .4)
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L-

From the definition of K. (5.4b), we also obtain

Q - NpK,1 (B.3)

Proof of Lemma 5.1

We first show that (i), (ii), and (iv) => Q e J . Let P. = N /D be a
. p

coprime factorization of P* such that rel deg Op(s) 0 0. Since () => rel deg

P*(s) - 1, it follows that rel deg Np(s) = 1. Moreover, (iv) =>

rel deg K.(s) = 1, and that KI(s) and K2 (s) are stable. This, together with

(ii) and (8.3) establishes that 0 £ J

Hzv E S follows immediately by inspection of (B.2), since: F € S by

assumption; D , N c S • Q E J A £ S by assumption (vi); and finally (vi)
p -1

=> (ii) of Lemma B-1 => (1+AT.) E S

Conditions (iv) and (vi) => H c SPR This follows from Lemma 4.1
ev 04by ~~ ~ e SetngP= nd o

by letting Iev Z K and letting 1 + ?I (1+A)(1+AT.)-1  Thus, (4.4a) is

e evsatisfied since K e SPR from (iv). Also, from (4.4b),0: N
k(w) -9tev(jw) i  tA(iw)S*(Jw)[1-A(jw)T*(Jw)]'1  (B.4)

* 8~~~~(w)IS*(Jca)I (l) B1- w1ITlwI -
0< IF() - n(w) (8.5)

The last inequality comes from conditions (vi) and the definition of

r(a ) from (4.4b).

The final step in the proof of Lemma 5.1 is to show that there are a

sufficient number of parameters in 6* to insure a solution exists. This is

guaranteed by satisfaction of condition (v). To see this combine (8.3) with

the definition of Q from (B.1) to get

Q: NN +D D NpK- 1  (B.6)
c~ P C pc P
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From (5.2), let NC A/ and D 1 =I A be a coprime factorization of
* ~ 2/ *DC

C*, and let Np* g N*/L and op a 1 + D*/L be a coprime factorization of P*9

pp
polynomial equation.

A* K D + A K N *L(K N-K DO (8.7)
11 *21* 2* 1

Since deg(K 2 N) deg(K ID*) and K. K 2, N*, and D* are all monic, it follows

tht e[LK2 N*K I D* - dgL e(I+deg(D*) - 1 . Then, using known
* results on polynomial equations, e.g. [303, it can be shown that (v) implies

- that (B.7) has a solution (A*,, A*2)
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